
API & Scripting
PRIME V. 4.9

CONTENTS

C# API 14
Introduction 14
Object Hierarchy 15

SceneControl Object Hierarchy 15
Scene Object Hierarchy 16
Canvas Object Hierarchy 17
ControlPanel Object Hierarchy 17

Scripting Objects 19
IScene 19

Properties 19
Events 20

PlayoutStateChanged 21
ActionPlayed 21

Methods 22

PRIME API & Scripting
User Guide

2

FindObject 23
LogError 23
LogException 24

ISceneObject 24
Properties 25
Events 25

PropertyChanged 25
BeforePropertyChanged 25
AfterPropertyChanged 26

Methods 26
Exists 27
GetValue 27
SetValue 28

IDynamicObject 28
Properties 29
Events 29

PropertyAnimated 30
Methods 30

FindAnimation 31
GetAnimation 31
IAnimation GetAnimation(string name) 31

IAction 32
Properties 32
Events 32
Methods 32

Play 33
Stop 33
Reverse 34

SceneActionList 35
Properties 36
Methods 36

Contains 36
Find 37

IAnimation 37

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

3

Properties 37
Methods 39

Find 40
GetFirstKeyframe 40
GetLastKeyframe 41

AnimationList 42
Properties 42
Methods 43

Find 43
Get 44

IParameter 44
Properties 44

IParameterList 45
Events 45
Methods 47

IParameter Find(string name) 47
IParameter Set(string name, object value) 47
IParameter Add(object value) 47
void Remove(IParameter parameter) 48

SceneControl 48
Properties 49
Events 50

BeforeLoad 50
AfterLoad 50
AfterPlay 51
BeforeStop 52
AfterStop 53

Methods 54
Invoke 55

FrameRate 55
Properties 56

Resolution 56
Properties 57

Workflow Logger 57

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

4

Workflow Configuration Settings 58
Workflow Monitor 60

Control Panel Objects 60
Button 61

Properties 61
Events 61

BeforePropertyChanged 61
PropertyChanged 61
AfterPropertyChanged 62
Click 62

Label 63
Properties 63

TextBox 63
Properties 63
Events 63

BeforePropertyChanged 63
PropertyChanged 63
AfterPropertyChanged 63

ComboBox 64
Properties 65
Events 65

BeforePropertyChanged 65
PropertyChanged 65
AfterPropertyChanged 65
SelectedIndexChanged 65

CheckBox 67
Properties 67
Events 67

BeforePropertyChanged 67
PropertyChanged 67
AfterPropertyChanged 67
CheckedChanged 67

RadioButton 68
Properties 69

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

5

Events 69
BeforePropertyChanged 69
PropertyChanged 69
AfterPropertyChanged 69
CheckedChanged 69

NumericUpDown 70
Properties 71
Events 71

BeforePropertyChanged 71
PropertyChanged 71
AfterPropertyChanged 71

TrackBar 72
Properties 73
Events 73

BeforePropertyChanged 73
PropertyChanged 73
AfterPropertyChanged 73

ListView 74
Properties 75
Events 75

BeforePropertyChanged 75
PropertyChanged 75
AfterPropertyChanged 75
SelectedIndexChanged 75

FilePicker 76
Properties 77
Events 77

BeforePropertyChanged 77
PropertyChanged 77
AfterPropertyChanged 77
FileChanged 77

AssetBrowser 78
Properties 79
Events 79

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

6

BeforePropertyChanged 79
PropertyChanged 79
AfterPropertyChanged 79
FileChanged 79

PictureBox 80
Properties 81

TimeCodeEditor 81
Properties 82
Events 82

BeforePropertyChanged 82
PropertyChanged 82
AfterPropertyChanged 82
FramesChanged 82

Canvas Objects 83
Text 84

Properties 84
Events 84

BeforePropertyChanged 84
PropertyChanged 84
AfterPropertyChanged 84
PropertyAnimated 85
TextChanged 85

Image 85
Properties 86
Events 86

BeforePropertyChanged 86
PropertyChanged 86
AfterPropertyChanged 86
PropertyAnimated 86
ImageChanged 86

Clip 87
Properties 88
Events 88

BeforePropertyChanged 88

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

7

PropertyChanged 88
AfterPropertyChanged 88
PropertyAnimated 88
Finished 88

Cube 89
Properties 90
Events 90

BeforePropertyChanged 90
PropertyChanged 90
AfterPropertyChanged 90
PropertyAnimated 90

Model 90
Properties 91
Events 91

BeforePropertyChanged 91
PropertyChanged 91
AfterPropertyChanged 91
PropertyAnimated 91
FileChanged 91

Effects 92
Properties 93
Events 93

BeforePropertyChanged 93
PropertyChanged 93
AfterPropertyChanged 93
PropertyAnimated 93

Crop 93
Properties 94
Events 94

BeforePropertyChanged 94
PropertyChanged 94
AfterPropertyChanged 94
PropertyAnimated 94

Mask 94

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

8

Properties 95
Events 95

BeforePropertyChanged 95
PropertyChanged 95
AfterPropertyChanged 95
PropertyAnimated 95

Material 95
Properties 96
Events 96

BeforePropertyChanged 96
PropertyChanged 96
AfterPropertyChanged 96
PropertyAnimated 96

Light 96
Properties 97
Events 97

BeforePropertyChanged 97
PropertyChanged 97
AfterPropertyChanged 97
PropertyAnimated 97

Render Texture 97
Properties 98
Events 98

BeforePropertyChanged 98
PropertyChanged 98
AfterPropertyChanged 98
PropertyAnimated 98

Warp 98
Properties 99
Events 99

BeforePropertyChanged 99
PropertyChanged 99
AfterPropertyChanged 99
PropertyAnimated 99

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

9

Page Turn 99
Properties 100
Events 100

BeforePropertyChanged 100
PropertyChanged 100
AfterPropertyChanged 100
PropertyAnimated 100

Transition 100
Properties 101
Events 101

BeforePropertyChanged 101
PropertyChanged 101
AfterPropertyChanged 101
PropertyAnimated 101

Crawl 101
Properties 102
Events 102

BeforePropertyChanged 102
PropertyChanged 102
AfterPropertyChanged 102
PropertyAnimated 102

Character 103
Properties 104
Events 104

BeforePropertyChanged 104
PropertyChanged 104
AfterPropertyChanged 104
PropertyAnimated 104

Usage 104
Canvas Objects 105

Graphics 105
Text 106
Clip 108
Image 110

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

10

Effects 112
Warp 113
Transition 115

Transition before Update Events 115
Transition after Update Events 117

Crawl 118
Start of Line Event 119
End of Line Event 120
End of File Event 121
End of Data Event 122

Resources 122
Timer 123

Timer Properties 123
Timer Events 127

Button Events 131
Toolbox 131

Keyframe Trigger 133
Interface 136

Scripting Editor 137
Scene Scripting 137
Scripting Properties 138

References 139
Assemblies 139
Files 140

Error List 140
Scripting Properties 141

Appendix 143
Text File Reader 143

Canvas 143
Control Panel 143
Script 143

Side Show 146
Canvas 146
Control Panel 146

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

11

Script 148
VB-Jscript 153

The Model 154
Script Execution and Context 154
Scene Designer 155
Object Hierarchy 160
Global Keywords 161

ActiveScene 161
Prime 161
Parameters 161

API Reference 162
Prime 163

AllScenes 163
OpenScenes 163
Parameters 163
Scene(id As String) 164
SceneExists(id As String) 164

SceneCollection 165
Count 165
Item(index) 165
CloseAll 165
StopAll 165

Scene 165
Close 166
Control(name) 166
Controls 167
Load 167
Object(name As String) 167
Objects 168
Open 168
Parameters 168
Play 168
SceneId 168
SceneState 169

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

12

Stop 169
Control 170

Name 170
Type 170

Button 171
Pressed 171

CheckBox 171
Checked 172

ComboBox 172
ItemCount 172
Items 172
SelectedItem 173
GetItemValue(item) 173

FilePicker 173
Path 174

RadioButton 174
Selected 175

RichTextEditor 175
Text 176

Numeric Up/Down 176
Value 177

TextBox 177
Text 178

TimeCodeEditor 178
Duration 179
Frames 179

Object 179
Name 180

Action 180
Name 181
Trigger 181

Parameters 181
Item(name As String) 182
Items 182

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

13

Contains(name As String) 183
Remove(name As String) 183

PRIME C# API Interaction 183

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

14

C# API
Introduction

PRIME versions 4.0 and later introduced support for C# scripting, which includes the ability to
interact with and control the state of scenes, their actions and control panel controls through C#
scripts. This document will be describing the PRIME version and scripting interface.

There is only one PRIME application running on a system at a time. The application services
request through the API, providing the ability to retrieve and modify the state of scenes in the
local PRIME database.

The Scene is the basic PRIME structure, containing multiple graphical, hardware and control
elements called SceneObjects that define an interface to configurable aspects of the scene.
Scenes also contain one or more Actions, which define object animations, and may be
triggered through the scripting API. Each scene also has a collection of customizable User
Parameters, which allows scripts to store and retrieve context information at runtime.

PRIME uses the Microsoft C# compiler to provide support for C# scripting. Scripts associated
with a scene at design time are executed in-process. In-process scripts are provided context
and a handle on the PRIME API in the form of global keywords that are accessible from the
script. Other classes needed for more complex scripting are available through both
Microsoft.NET assemblies as well as PRIME assemblies.

As of PRIME 4.5, the underlying architecture of PRIME was upgraded from .NET Framework to
.NET6. Microsoft has changed the API in some cases and deprecated some functionalities.
Therefore any customer upgrading to PRIME 4.5 or higher using C# scripting will need to retest
their C# script and may need to make changes to their code if it directly makes calls to .NET
library methods in order to make it compatible with .NET 6.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

15

Object Hierarchy

SceneControl Object Hierarchy

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

16

Scene Object Hierarchy

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

17

Canvas Object Hierarchy

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

18

ControlPanel Object Hierarchy

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

19

Scripting Objects

IScene

The scene object is available through the main script object, which is a SceneControl. Each
scene contains a collection of graphical, hardware and control elements called ISceneObjects,
such as crawls, images and controls, which are exposed to scripting using the AllObjects
enumeration properties, as shown below.

Namespace: Chyron.PowerBox.Scene.Objects

Properties

Name Type Description
Name string Gets the scene name.
Resolution Resolution Gets or sets the resolution of the scene (see

Resolution section).
FrameRate FrameRate Gets or sets the frame rate of the scene (see

FrameRate section)
Description string Gets the scene description.
Closed bool Gets a flag indicating if the scene is closed.
Playing bool Gets a flag indicating if the scene is playing.
Stopped bool Gets a flag indicating of the scene is stopped.
PlayoutState PlayoutState The PlayoutState is an enumerated value that

indicates the current state of the scene. Below is a
list of valid values and what they mean.

Closed Scene in not in preview of on air.
Loaded Scene is in preview
Playing Scene is on air.
Stopping Scene is being stopped (being
transferred from on air to preview)
Stopped Scene in in preview.

Status string Gets a descriptive status of the scene.
FilePath string Gets the file with full path of the scene.
Directory string Gets the directory of the scene.
ProjectDirectory string Gets the directory of the project the scene is

contained in.
AllObjects IEnumerable<ISceneObject> Get the list of all objects including graphics, control

panel, resources and effects that the scene
contains.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

20

Actions SceneActionList Gets the list of Actions defined for this scene.
Canvas Canvas Gets the canvas object used for the display of

graphics and effects.
Scripting Scripting Gets the scripting object for this scene.
ControlPanel ControlPanel Gets the control panel object used in the display of

the control panel objects.
Resources SceneResources Gets the list of resources defined for this scene

such as DataObjects,
Parameters ParameterList Gets the list of parameters defined for the scene.
Expressions ExpressionList Gets the list of expressions defined for the scene.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

21

Events

PlayoutStateChanged

The event is triggered when the state of the scene changes.

Example:

public ScriptTest()
{

InitializeComponent();

// Hookup your handler to the scenes event
this.Scene.PlayoutStateChanged += OnPlayoutStateChanged;

}

// Handles the PlayoutStateChnaged event from the scene
private void OnPlayoutStatedChanged(IScene scene)
{
switch (scene.PlayoutState)
{
case PlayoutState.Loaded:
// You code to handle the Loaded state
break;

case PlayoutState.Playing:
// Your code to handle the Playing state
break;

case PlayoutState.Closed:
// Your code to handle the Closed state
break;

case PlayoutState.Stopped:
// Your code to handle the Stopped state.
break;

}
}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

22

ActionPlayed

The event is triggered when one of the scenes actions is played.

Example:

public ScriptTest()
{

InitializeComponent();

// Hookup your handler to the scenes event
this.Scene.ActionPlayed += OnActionPlayed;

}

// Handles the ActionPlayed event from the scene
private void OnActionPlayed(IAction action)
{

// Your code to handle the ActionPlayed event
}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

23

Methods

FindObject

Find the specified object by name from the list of objects the scene contains. This includes
graphical, control panel, resource and effect objects. If the object for the name specified was
not found, then null is returned so a check of the return value is necessary.

Syntax:
ISceneObject FindObject(string name)

Example:

// Attempt to find object “MyCrawl” in scene
var effect = Scene.FindObject("MyCrawl");
if (effect != null)
{

// Add you code here
}
else
{

Scene.LogError("MyCrawl not found")
}

LogError

Logs the specific string to the log file.

Syntax:
void LogError(string error)

Example:

This example tries to find and scene object called “MyObject” in the list. If the object is not found
the value returned is null and is checked so that a message can be logged.

// Attempt to find object “MyObject” in scene
var obj = Scene.FindObject("MyObject");
if (obj != null)
{

// Add you code here
}
else
{

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

24

Scene.LogError("MyObject not found")
}
LogException

Log the specified exception to the log file.

Syntax:
void LogException(Exception exception)

Example:

The LogException() method is used in conjunction with try-catch construct seen below. You
wrap you code in a try catch block in case an exception is thrown so can log it as well as have
the ability to handle it gracefully.

private void MyMethod()
{

try
{

// Add your code here
}
catch (Exception ex)
{

Scene.LogException(ex);

}
}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

25

ISceneObject

The ISceneObject is the interface of all Control Panel, Canvas and Resource and Effect objects
in a scene. The ISceneObject allows a script author the ability to affect the state of any objects
that the scene contains. To access the ISceneObjects from a Scene you would use either
AllObjects property or the FindObject() method.

Namespace: Chyron.Framework.Scene.Objects

Properties

Name Type Description
Name string Gets the name of the scene object.
ScriptName string Gets the script name for the scene object.
Scene IScene Gets the scene the scene object is associated with.
Events EventList Gets the list of events associated with the scene object.
Parent ISceneObjectParent Gets the parent of the scene object.

Events

PropertyChanged

Event is triggered when one of the scene objects properties has changed.

Syntax:

void PropertyChanged(string property)

BeforePropertyChanged

Event is triggered prior to a property being changed allowing for the scene author to perform
some processing prior to a particular property on a scene object is performed. Notice that the
first parameter in the syntax identifies the ISceneObject that is triggering this event. This allows
the scene author to use the same event handler to handle multiple BeforePropertyChanged
events from different ISceneObject’s.

Syntax:

void BeforePropertyChanged(ISceneObject sceneObject, string property, object
value)

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

26

AfterPropertyChanged

Event is triggered after the property has been changed allowing for the scene author to perform
some processing after a particular property on a scene object is performed. Notice that the first
parameter in the syntax identifies the ISceneObject that is triggering this event. This allows the
scene author to use the same event handler to handle multiple AfterPropertyChanged events
from different ISceneObjects.

Syntax:

void AfterPropertyChanged(ISceneObject sceneObject, string property, object
value)

Example:

Register event handlers for the PropertyChanged, BeforePropertyChanged and
AfterPropertyChanged event so that the scene author can perform processing when these
events are triggered.

public ScriptTest()
{

InitializeComponent();

var textbox = this.Scene.FindObject("MyTextBox");

if (textbox != null)
{

textbox.PropertyChanged += OnPropertyChanged;
textbox.BeforePropertyChanged += OnBeforePropertyChanged;
textbox.AfterPropertyChanged += OnAfterPropertyChanged;

}

}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

27

Methods

Exists

Returns true of the property specified by type exists in the property list.

Syntax:

bool Exists(string property)

Example:

// Get the SAMPLE scene from the ChannelBox database
var scene = ChannelBox.GetScene("SAMPLE");

// Gets the object MyTextBox from the SAMPLE scene
var obj = scene.FindSceneObject("MyTextBox");

// Check if the MyTextBox has a Text property that has been set. If true
// then access the value otherwise ignore since we don’t want use
// the default value.
if (obj.Exists("Text"))
{

// Get the Text property value
var value = obj.GetValue("Text");

// Do something with the value

}

GetValue

Returns the value of the property specified if it exists otherwise a null is returned.

Syntax:

object GetValue(string property)

Example:

Get the “MyTextBox” scene object and make sure that it was found by checking against the null
value. If the scene object was found, then try to get the value for “PropertyName”. Check the
value return against null to make sure the property was found.

var textbox = this.Scene.FindObject("MyTextBox");
if (textbox != null)
{

var value = textbox.GetValue("PropertyName");

if (value != null)
{

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

28

// Your code to use the value for PropertyName
}

SetValue

Sets the property value for the type specified.

Syntax:

void SetValue(string property, object value)

Example:

Get the “MyTextBox” scene object and make sure that it was found by checking against the null
value. If the scene object was found, then set the Text property of the scene object to “Test.

var textbox = this.Scene.FindObject("MyTextBox");
if (textbox != null)
{

textbox.SetValue("Text", “Test”);

}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

29

IDynamicObject

The IDynamicObject is the base interface for graphics and effects scene objects. It extends the
functionality of the ISceneObject described earlier.

Namespace: Chyron.Framework.Scene.Objects

Properties

Name Type Description
Animations AnimationList Gets the list of animations for this scene object.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

30

Events

PropertyAnimated

Event is triggered when one of the scene properties is animated.

Syntax:

void PropertyAnimated(IDynamicObject parent, string property)

Example:

Register the OnPropertyAnimated event handler to a graphics Text objects (Text1)
PropertyAnimated event. This example handles the property-animated event for the
“MyGraphicText” object and x position property.

public ScriptTest()
{

InitializeComponent();

Text1.PropertyAnimated += OnPropertyAnimated;

}
// Event handler for the PropertyAnimated event of the scene object
private void OnPropertyAnimated(IDynamicObject dynamicObject, string
property,

object value)
{

if (dynamicObject.Name == "MyGraphicText" && property == "PositionX")
{

// Your code for handling the property animated event
}

}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

31

Methods

FindAnimation

Attempts to find the animation using the name specified and return it. If the animation was not
found then a null is returned.

Syntax:

IAnimation FindAnimation(string name)

Example:

Attempt to get the animation using the name specified “MyAction” and if found then the
animation object is returned. We must check for null before to make sure that a valid object was
returned.

private void FindAnimationExample()
{

var animation = Text1.FindAnimation("MyAction");

if (animation != null)
{

// Your code to manipulate the animation
}

}

GetAnimation

Attempts to find the animation using the name specified and return it. If the animation was not
found, then a new animation with the name specified is returned.

Syntax:

IAnimation GetAnimation(string name)

Example:

Attempt to get the animation using the name specified “MyAction”, if the animation is not found
then a new animation is created and returned.

private void GetAnimationExample()
{

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

32

var animation = Text1.GetAnimation("MyAction");
// Your code to manipulate the animation

}
IAction

The object describes an action used within a scene. It is the element used within the
SceneActionList described below.

Namespace: Chyron.Powerbox.Scene.Actions

Properties

Name Type Description
Name string Gets the name of the Action
ScriptName string Gets the name of the script associated with this Action
Length TimeCode Gets or sets the length in time for this Action
Animations IEnumerable<IAnimation> Gets the list of animations associated with this Action
Playing bool Gets the flag indicating if the Action is playing or not.

Events

Name Description
Played Event triggered when the action is played
Finished Event triggered when the action has finished playing.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

33

Methods

Play

Plays the action.

Syntax:

void Play()

Example:

Handles a SelectedIndexChanged event for a ComboBox (see Control Panel section) that will
take the current selected action name from the MyActionComboBox and use that to lookup the
action in the current scenes action list. If the action was found and is not playing, then play the
action.

private void OnSlectedIndexChanged(object sender, EventArgs args)
{

var name = MyActionComboBox.SelectedItem as string;

var action = this.Scene.Actions.Find(name);

if (action !=- null && !action.Playing)
{

action.Play();
}

}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

34

Stop

Stops the action if being played.

Syntax:

void Stop()

Example:

Handles a SelectedIndexChanged event for a ComboBox (see Control Panel section) that will
take the current selected action name from the MyActionComboBox and use that to lookup the
action in the current scenes action list. If the action was found and is playing, then stop the
action.

private void OnSlectedIndexChanged(object sender, EventArgs args)
{

var name = MyActionComboBox.SelectedItem as string;

var action = this.Scene.Actions.Find(name);

if (action !=- null && action.Playing)
{

action.Stop();
}

}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

35

Reverse

Reverses the action.

Syntax:

void Reverse()

Example:

Handles a SelectedIndexChanged event for a ComboBox (see Control Panel section) that will
take the current selected action name from the MyActionComboBox and use that to lookup the
action in the current scenes action list. If the action was found, and is not playing, then reverse
the action.

private void OnSlectedIndexChanged(object sender, EventArgs args)
{

var name = MyActionComboBox.SelectedItem as string;

var action = this.Scene.Actions.Find(name);

if (action !=- null && !action.Playing)
{

action.Reverse();
}

}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

36

SceneActionList

Contains a list of IAction elements for a scene that allows for the access, manipulation and
monitoring of these elements.

Namespace: Chyron.PowerBox.Scene.Actions

Properties

Name Type Description
Count int The number of IAction elements in the list.

Methods

Contains

Returns true if an action with the name specified exists in the list, false if it does not.

Syntax:

bool Contains(string name)

Example:

Check if the current scenes action list contains the action “MyAction” in the list prior to using the
Find() method and manipulating the action.

private void ContainsActionExample()
{

if (this.Scene.Actions.Contains("MyAction") == true)
{

var action = this.Scene.Actions.Find("MyAction");

// Your code to manipulate the action
}

}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

37

Find

Returns the IAction element that matches the name specified if found or null is not found. A
check of the return value against null is required.

Syntax:

IAction Find(string name)

Example:

Attempt to find “MyAction” action in the current scenes action list. Check to make sure that the
action was found by checking the return value against null.

private void FindActionExample()
{

var action = this.Scene.Actions.Find("MyAction");

if (action != null)
{

// Your code to manipulate the action
}

}

IAnimation

This object describes an action used within a scene. It is the element used within the
SceneActionList described below.

Namespace: Chyron.PowerBox.Scene.Objects

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

38

Properties

Name Type Description
Name string Gets the name of the Animation
ScriptName string Gets the script name for this animation.
Loop bool Gets the flag indicating whether the animation is to loop

or not.
HasKeyFrames bool Gets the flag indicating whether the animation contains

keyframes.
IsDefault bool Gets the flag indicating whether this animation is the

default.
ParentObject IDynamicObject Gets the parent object that owns this animation.
Length TimeCode Gets the length in time for this animation.
Keyframes KeyframeList Gets the list of keyframes associated with this animation.
[string name] IKeyframe Indexer allowing the scene author access to the

keyframes associated with this animation as if accessing
an array of elements using the name. When using the
indexer to access animations keyframes it works just like
the Find() method described below in which case a null is
returned if the name specified is not found.
Example:
private void
FindAnimationKeyframeExampleUsingIndexer()
{

var animation =

Text1.Animations.Find("MyAnimation");

if (animation != null)
{
var keyframe =

animation["MyStartingKeyFrame"];

if (keyframe != null)
{
// Your code to manipulate the
// animations keyframe

}
}

}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

39

[int index] IKeyframe Indexer allowing the scene author iterate over all the
animations keyframes by using an indexer.

Example:

private void

FindAnimationKeyframeExampleUsingIndexer()
{

var animation =
Text1.Animations.Find("MyAnimation");

if (animation != null)
{
for (var i = 0;

i < animation.Keyframes.Count;
i++)

{
var keyframe = animation[i];

// Your code to manipulate the
// animations keyframe

}
}

}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

40

Methods

Find

There are two methods available which enables the author to find a keyframe in the animation.
One uses the name and the other the frame index. If any of these methods cannot find the
keyframe based on the parameter then a null is retuned.

Syntax:

IKeyframe Find(string name)

IKeyframe Find(int frame)

Example:

Attempts to find the “MyKeyframe” keyframe in the “MyAnimation” animation. Notice that each
find checks the returned value against null to make sure a valid object is returned.

private void FindKeyframeExample ()
{

var animation = Text1.Animations.Find("MyAnimation");

if (animation != null)
{

var keyframe = animation.Find("MyKeyframe");

if (keyframe != null)
{

// You code to manipulate the keyframe
}

}

}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

41

GetFirstKeyframe

Syntax:

IKeyframe GetFirstKeyframe();

Example:

Gets the first keyframe from “MyAnimation” animation. Notice that the keyframe returned from
GetFirstKeyframe() is checked against null in case not keyframes are present.

private void GetFirstKeyframeExample ()
{

var animation = Text1.Animations.Find("MyAnimation");

if (animation != null)
{

var keyframe = animation.GetFirstKeyframe();

if (keyframe != null)
{

// You code to manipulate the keyframe
}

}
}
GetLastKeyframe

Syntax:

IKeyframe GetLastKeyframe()

Example:

Gets the last keyframe from “MyAnimation” animation. Notice that the keyframe returned from
GetLastKeyframe() is checked against null in case not keyframes are present.

private void GetLastKeyframeExample ()
{

var animation = Text1.Animations.Find("MyAnimation");
if (animation != null)
{

var keyframe = animation.GetLastKeyframe();
if (keyframe != null)
{

// You code to manipulate the keyframe
}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

42

}
}
AnimationList

Contains a list of IAnimation elements for a scene that allows for the access, manipulation and
monitoring of these elements.

Namespace: Chyron.PowerBox.Scene.Objects

Properties

Name Type Description
Count int The number of IAnimation elements in the list.
AllKeyfarmes IEnumerable<IKeyframe> Returns a list of all keyframes from all the animations.
[string name] IAnimation Indexer allowing the scene author access to the

animations as if accessing an array of elements using
the name. When using the indexer to access
animations it works just like the Find() method
described below in which case a null is returned if the
name specified is not found.

Example:
private void
FindAnimationExampleUsingIndexer()
{

var animation =

Text1.Animations["MyAnimation"];

if (animation!= null)
{

// Your code to manipulate
the

// animation
}

}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

43

Methods

Find

Attempts to find the animation using the name specified. If the animation is found, then the
object is returned otherwise a null is returned if the animation is not found.

Syntax:

IAnimation Find(string name)

Example:

Attempt to find “MyAnimation” animation in the graphics text object Text1. Check to make sure
that the animation was found by checking the return value against null.

private void FindAnimationExample()
{

var animation = Text1.Animations.Find("MyAnimation");

if (animation!= null)
{

// Your code to manipulate the animation
}

}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

44

Get

Attempts to find the animation using the name specified and it is does not then it will add a new
animation with the name specified.

Note – Care should be taken if this method is used, since new animations will be added if the
name specified is not found. The Find() method is the suggested method to use.

Syntax:

IAnimation Get(string name)

Example:

Attempt to find “MyAnimation” animation in the graphics text object Text1 if it is not found then a
new animation is added with the name specified. Notice that no check is required for the
animation returned as it is either found or created so a valid object will always be returned.

private void GetAnimationExample()
{

var animation = Text1.Animations.Get("MyAnimation");
// Your code to manipulate the animation

}
IParameter

The IParameter is interface used to define all parameter type objects with the PRIME system. It
is used as the object type for the IParameterList described below, and is used to access,
modify and manipulate parameter values within the scene.

Namespace - Chyron.Enterprise.Infrastructure.Parameters

Properties

Type Name Description
string Name Gets the name of the

Parameter
object Value Gets or sets the value of

the parameter

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

45

IParameterList

The IParameterList is the interface for all lists utilizing the IParameter interface described
above. It allows for the access, modification and manipulation of these elements using the
methods defined below.

Namespace: Chyron.Enterprise.Infrastructure.Parameters

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

46

Events

Name Description
ParameterChanged This event is triggered when an IParameter element in the list has changed.

This event can be used to detect when a particular parameter of interest value
has been modified so that some process can take place.

Example:

The handler must first be attached to the event such as in the constructor method, which is the
same name as the scene, which is seen below, and is called when the main scripting object is
created. The using line must be added to the list at the beginning of the script so that the
IParameter properties and methods can be accessed in the handler.

// Required for IParameter type in handler
using Chyron.Enterprise.Infrastructure.Parameters;
// constructor
public ScriptTest()
{

InitializeComponent();

// Attach handler to event
this.Parameters.ParameterChanged += OnParameterChanged;

}
…

// Handles the ParameterChanged event
private void OnParameterChanged(IParameter parameter, object previousValue)
{

if (parameter.Name == "MyParameter")
{

try
{

// Add your code here
}
catch (Exception ex)
{

// Add you code to handle exception
Log("Failed to handle ParameterChanged event");

}
}

}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

47

Methods

IParameter Find(string name)

Attempts to find the IParameter element with the name specified in the list. If found, then the
parameter is return otherwise a null value is returned. The return value should be checked for
null to determine if the parameter was found and proper handling should be implemented.

Example:

Find a IParameter element by name to get the value. Verify that the parameter actually was
found by checking the if the return value is null. If the parameter was not found log some error
message and use a default value otherwise use the parameters value.

var parameterValue = "DefaultParameterValue";
var parameter = this.Parameters.Find("MyParameter");
if (parameter == null)
{
Log("MyParameter was not found");

}
else
{
parameterValue = Convert.ToString(parameter.Value);

}

IParameter Set(string name, object value)

Sets or adds the value of the IParameter element whose name is specified in the method. If the
IParameter element specified by the name already exists, then the value is set but if it not then
a new IParameter element is added with name and values specified. Notice that the value of
the parameter is a generic object which is to allow a parameter to be any one of the following
types (Boolean, ByteArray, DateTime, Double, Int, Long, String and TimeSpan).

Example:

var parameterValue = "NewValue";
var parameter = this.Parameters.Set("MyParameter", parameterValue);

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

48

IParameter Add(object value)

Adds a new IParameter element to the list with the value specified. The name of the parameter
will be “Parameter N” where N is an incremental number for the parameter. Notice that the
value of the parameter is a generic object which is because a parameter can be any one of the
following types (Boolean, ByteArray, DateTime, Double, Int, Long, String and TimeSpan). The
parameter added will only be temporary and is only available during the playout.

Example:

var newParameter = this.Parameters.Add("This is a test");

void Remove(IParameter parameter)

Removes a IParameter element from the list such as a temporary one that was added with the
Add() method described above.

Example:

this.Parameters.Remove(newParameter);

Warning:

Removing parameters that were not added through the Add() or Set() method is not
recommended as it may cause adverse and/or unexpected affects during the playout.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

49

SceneControl

SceneControl is the top-level object available to scene script. This object allows the script
author the ability to affect the state of the current scene and its objects, store and retrieve
context information for use by other scripts, and a plethora of other features.

Namespace: Chyron.PowerBox.Playout.UserInterface

Properties

Name Type Description
Scene IScene This returns the current scene that is being acted upon. Access to

all scene properties are done through this property (see Scene
section)

Parameters IParameterList This property allows the script author to access and modify any of
the parameters defined in the scene (see IParameterList section)

InvokeRequired bool If this property is true then Invoke() method needs to be used
update any controls on the Control Panel. If false then Invoke() is
not required and update to any of the Control Panel controls
directly.

Example:

To enable a MyButton button on the control panel the following code is needed if this is being
done on a separate thread.

// Enable/Disable MyButton on control panel
private void EnableButton(bool enable)
{

if (this.InvokeRequired)
{

Invoke(new Action<bool>(EnableButton), new object [] { enable }
);

}
else
{

MyButton.Enabled = enable;
}

}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

50

Events

To utilize events within your script you will need to attach an event handler that will perform
some task before continuing with the process. Take note that tasks within the event handlers
should be kept short so as not to delay the scene. In addition, error handling should be
considered, as any code that generates an exception will cause the scene to stop processing at
that point.

BeforeLoad

This event is triggered before the scene is loaded into preview.

Syntax:

void BeforeLoad(IScene scene)

Example:

Attach your event handler method OnBeforeLoad to the BeforeLoad event in the constructor
of the scenes script class. Any time the BeforeLoad event is triggered the OnBeforeLoad
method will be called.

// constructor
public ScriptTest()
{

InitializeComponent();

// Attach event handler to event
this.BeforeLoad += OnBeforeLoad;

}

…

// Handles the BeforeLoad event

private void OnBeforeLoad(IScene scene)
{
// Add your code here, but make sure it is not a long process

}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

51

AfterLoad

This event is triggered after the scene is loaded into preview. It will not be triggered if the scene
is taken to air directly. This event is triggered before the scene is loaded into preview.

Syntax:

void AfterLoad(IScene scene)

Example:

Attach your event handler method OnAfterLoad to the AfterLoad event in the constructor of
the scenes script class. Any time the AfterLoad event is triggered the OnAfterLoad method will
be called.

// constructor
public ScriptTest()
{

InitializeComponent();

// Attach event handler to event
this.AfterLaod += OnAfterLoad;

}

…

// Handles the AfterLoad event

private void OnAfterLoad(IScene scene)
{
// Add your code here, but make sure it is not a long process

}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

52

AfterPlay

This event is triggered after the scene is taken to air. It will not be triggered if the scene is
directly loaded into the preview channel. This event is triggered before the scene is loaded into
preview.

Example:

Attach your event handler method OnAfterPlay to the AfterPlay event in the constructor of the
scenes script class. Any time the AfterPlay event is triggered the OnAfterPlay method will be
called.

// constructor
public ScriptTest()
{

InitializeComponent();

// Attach event handler to event
this.AfterPlay += OnAfterPlay;

}

…

// Handles the AfterPlay event

private void OnAfterPlay(IScene scene)
{
// Add your code here, but make sure it is not a long process

}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

53

BeforeStop

This event is triggered before the scene is transferred from air to preview. Clearing the scene
from preview or air does not trigger this event. This event is triggered before the scene is loaded
into preview.

Example:

Attach your event handler method OnBeforeStop to the BeforeStop event in the constructor of
the scenes script class. Any time the BeforeStop event is triggered the OnBeforeStop method
will be called.

// constructor
public ScriptTest()
{

InitializeComponent();

// Attach event handler to event
this.BeforeStop -= OnBeforeStop;

}

…

// Handles the BeforeStop event

private void OnBeforeStop(IScene scene)
{
// Add your code here, but make sure it is not a long process

}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

54

AfterStop

This event is triggered after the scene is transferred from air to preview. Clearing the scene from
preview or air does not trigger this event. This event is triggered before the scene is loaded into
preview.

Example:

Attach your event handler method OnAfterStop to the AfterStop event in the constructor of the
scenes script class. Any time the AfterStop event is triggered the OnAfterStop method will be
called.

// constructor
public ScriptTest()
{

InitializeComponent();

// Attach event handler to event
this.AfterStop += OnAfterStop;

}

…

// Handles the AfterStop event
private void OnAfterStop(IScene scene)
{
// Add your code here, but make sure it is not a long process

}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

55

Methods

Invoke

This method executes the specified delegate on the thread that owns the control's underlying
window handle.

Syntax:

object Invoke(Delegate method)

Example:

To enable a MyButton button on the control panel the following code is needed if this is being
done on a separate thread.

// Enable/Disable MyButton on control panel
private void EnableButton(bool enable)
{

if (this.InvokeRequired)
{

Invoke(new Action<bool>(EnableButton), new object [] { enable }
);

}
else
{

MyButton.Enabled = enable;
}

}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

56

FrameRate

Contains information about the frame rate.

Namespace: Chyron.Enterprise.Infrastructure.TimeCode

Properties

Name Type Description
FieldRate double Gets the field rate.
Interlaced bool Gets the flag indicating if the frame rate is interlaced.
Rate double Get the rate.
RoundedFieldRate Int Gets the FieldRate round to an interger.
RoundedRate Int Gets the Rate rounded to an interger.
Type FrameRateType The FrameRateType is an enumerated value that indicates

the type of this frame rate. Below is a list of valid values and
what they mean.
_24 24 Hz
_25 25 Hz
_30 30 Hz
_29_97 29.97 Hz
_48 48 Hz
_50 50 Hz
_60 60 Hz
_59_94 59.94 Hz
_23 23 Hz
_100 100 Hz

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

57

Resolution

Contains information about the resolution.

Namespace: Chyron.PowerBox.Scene.Objects

Properties

Name Type Description
Width int Gets the width in pixels for this resolution.
Height bool Gets the height in pixel for this resolution.
Size Size Gets the size (height and width) of this resolution.
FrameRate FrameRate Gets the frame rate for this resolution (see FrameRate section).
Interlaced Bool Gets a flag indicating that the resolution is interlaced,
PixelAspect double Gets the pixel aspect ratio for this resolution.
AspectRation float Gets the aspect ratio for this resolution.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

58

Workflow Logger

Workflow logging is available to the scene scripts by using the runtime instance of the workflow
manager object. There is a single method LogMessage() that can be used for logging to the
WorkFlow Monitor.

Namespace: Chyron.Framework.Application.WorkFlow

Syntax:

void LogMessage(WorkflowEvent eventType, string sceneName, string message)

Example:

using Chyron.Framework.Application.WorkFlow;

…

WorkflowManager.Instance.LogMessage(

WorkflowEvent.Message,

this.Scene.Name,

"My Message");

…

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

59

Workflow Configuration Settings

In order for logging to work, the user will need to enable it in the PRIME configuration settings
form.

Logging Options

These options allow you to fine tune the events/messages that you want PRIME to log. These
options will only be available if the Workflow Logger is enabled.

Action Triggers If checked enables logging of action triggers.
Intelligent Interface If checked enables logging of intelligent interface events.
Scene State Changes If checked enables logging of scene state changes.
Script Execution If checked allows logging of script execution.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

60

Workflow Monitor

The Workflow monitor available through the PRIME application will display the log entries sent
using the Workflow logger methods list above.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

61

Control Panel Objects

Each scene has a set of controls that are collectively referred to as the control panel. These
controls are exposed to scripting, providing specialized properties and functions pertinent to
each control type. From the scenes C# script controls are accessed using just their name. For
example, adding a new button control to the scenes control panel will automatically be named
“Button 1”. Accessing this control from the scenes C# script will be by the name Button1.
Although the name of a control can contain spaces these spaces are removed in the scripting
objects name. Accessing a scenes control through the Application Script is different and will be
described in another section.

All controls implement the ISceneObject interface, so all properties, events and methods from
this object are available to all of these objects. Most control panel controls correspond to
controls in the Microsoft C# library. To get a more complete list of properties, events and
methods for each of the controls in this section, refer to Microsoft’s documentation.

Note – The FilePicker, Time Code Editor and Asset Browser do not correspond to a
Microsoft C# control.

Button

The Button can be used to interact with the scene by performing a process when it is clicked.

Properties

Name Type Description
Name string Gets the name of the control
Enabled bool Gets the flag indicating if the control is enabled (true) or

disabled (false).
Visible bool Gets the flag indicating if the control is visible (true) or not

(false).
Text string Gets or sets the buttons label text.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

62

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

Click

Event triggered when the button is clicked with the mouse.

Syntax:

void Click(object sender, EventArgs args)

Example: This example registers a Click event handler for MyButton Button control. The
handler will change the Buttons Text property to “Stop” if the current text is “Play” and stop the
scenes “MyAction” action. Otherwise if the Button’s text is not “Play” it will change the Buttons
Text property to “Stop” and play the scenes “MyAction” action.

public ScriptTest()

{
InitializeComponent();

MyButton.Click += OnButtonClicked;

}

// Handles the Click event from MyButton
public void OnButtonClicked(object sender, EventArgs args)
{

var action = this.Scene.Actions.Find("MyAction");

if (MyButton.Text == "Play")
{

MyButton.Text = "Stop";
action.Play();

}
else
{

MyButton.Text == "Play"
action.Stop();

}
}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

63

Label

The Label can be used to help identify fields on the control panel by setting the Text property.

Properties

Name Type Description
Name string Gets the name of the control
Enabled bool Gets the flag indicating if the control is enabled (true) or

disabled (false).
Visible bool Gets the flag indicating if the control is visible (true) or not

(false).
Text string Gets or sets the labels text.

TextBox

The TextBox can be used to interact with a scene through binding to graphic controls or to
display context-based text generated within script.

Properties

Name Type Description
Name string Gets the name of the control
Enabled bool Gets the flag indicating if the control is enabled (true) or

disabled (false).
Visible bool Gets the flag indicating if the control is visible (true) or not

(false).
Text string Gets or sets the text that appears in the text box.
Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

64

TextChanged
This event is triggered when the TextBox controls Text property has changed. Note that this
event us triggered for every character entered or removed. Register a handler if you want to
perform an operation when the Text property is changed in the TextBox.

Syntax:

void TextChanged(object sender, EventArgs args)

Example

public ScriptTest ()
{

InitializeComponent();

// Get the SAMPLE scene from the ChannelBox database
var scene = ChannelBox.GetScene("SAMPLE");

// Hook up the event handler for the PlayoutStateChange event
scene.PlayoutStateChanged += OnPlayoutStateChanged;

}

// Handles the PlayoutStateChanged event from the scene.
private void OnPlayoutStateChanged(IChannelElement element)
{

// Set the TextBox text to the curent playout state
SceneStateTextBox.Text = element.PlayoutState.ToString();

}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

65

ComboBox

The ComboBox can be used to interact with a control panel combo box. Below is a list of some
of the ComboBox properties and events of interest. To get a more complete list refer to
Microsoft’s documentation.

Properties

Name Type Description
Name string Gets the name of the control
Enabled bool Gets the flag indicating if the control is enabled (true) or

disabled (false).
Visible bool Gets the flag indicating if the control is visible (true) or not

(false).
SelectedItem Item Type Gets the current selected item in the combo box or null if no

items are selected. Returns an object which is the type of the
items in the ComboBox.

Items ObjectCollection Gets the collection of items for the ComboBox. This property
allows the addition and removal of items in the ComboBox.

Items.Count int Gets the number of items in the ComboBox.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

66

SelectedIndexChanged

The event is triggered when the selected item is changed in the ComboBox. Register a handler
if you want to perform an operation when the SelectedItem property is changed in the
ComboBox.

Example

Fill in the combo box with the list of all actions in the current scene. Register
OnSelectedIndexChanged handler with the SelectedIndexChanged event from
MyComboBox. The OnSelectedIndexChanged() handler will get the action name from the
ComboBox.SelectedItem property and look up action in the current scenes action list. If the
action is found (not equal to null) and the action is not already playing then execute the Play()
method of the action.

public ScriptTest()
{

InitializeComponent();

foreach(vat action in this.Scene.Actions)
{

MyComboBox.Items.Add(action.Name);
}

MyComboBox.SelectedIndexChanged += OnSelectedIndexChanged;

}

// Handles the SelectedIndexChanged for MyComboBox

private void OnSlectedIndexChanged(object sender, EventArgs args)
{

var name = MyComboBox.SelectedItem as string;

var action = this.Scene.Actions.Find(name);

if (action !=- null && !action.Playing)
{

action.Play();
}

}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

67

CheckBox

The CheckBox can be used to interact with the scene by performing a process when it is
checked or unchecked.

Properties

Name Type Description
Name string Gets the name of the control
Enabled bool Gets the flag indicating if the control is enabled (true) or

disabled (false).
Visible bool Gets the flag indicating if the control is visible (true) or not

(false).
Checked bool Gets the flag indicating if the checkbox in checked (true) or not

(false).

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

68

CheckedChanged

The event is triggered when the check state of the CheckBox has changed.

Syntax:

void CheckedChanged(object sender, EventArgs args)

Example:

public ScriptTest()
{

InitializeComponent();

MyCheckBox.CheckedChanged += OnCheckedChanged;

}

// Handles the CheckedChanged event from MyCheckBox
public void OnCheckedChanged(object sender, EventArgs args)
{

// Your code for handling the checkbox checkedchanged event
}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

69

RadioButton

The RadioButton can be used to interact with the scene by performing a process when it is
checked or unchecked.

Properties

Name Type Description
Name string Gets the name of the control
Enabled bool Gets the flag indicating if the control is enabled (true) or

disabled (false).
Visible bool Gets the flag indicating if the control is visible (true) or not

(false).
Checked bool Gets the flag indicating if the radio button in checked (true) or

not (false).

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

70

CheckedChanged

The event is triggered when the check state of the RadioButton has changed.

Syntax:

void CheckedChanged(object sender, EventArgs args)

Example:

public ScriptTest()

{
InitializeComponent();

MyRadioButton.CheckedChanged += OnCheckedChanged;

}

// Handles the CheckedChanged event from MyRadioButton
public void OnCheckedChanged(object sender, EventArgs args)
{

// Your code for handling the radio button checkedchanged event
}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

71

NumericUpDown

The NumericUpDown can be used to interact with the current scene by setting a numeric
value.

Properties

Name Type Description
Name string Gets the name of the control
Enabled bool Gets the flag indicating if the control is enabled (true) or

disabled (false).
Visible bool Gets the flag indicating if the control is visible (true) or not

(false).
Value decimal Gets the value contained in the control.
Minimum decimal Gets or sets the minimum value that the NumericUpDown Value

can be set.
Maximum decimal Gets or sets the maximum value that the NumericUpDown

Value can be set.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

72

ValueChanged
This event is triggered when the NumericUpDowns controls Value property has changed.

Syntax:

void ValueChanged(object sender, EventArgs args)

Example:

public ScriptTest ()
{

InitializeComponent();

// Register handler
MyNumericUpDown.ValueChanged += OnValueChanged;

}

// Handles the ValueChanged event from the NumbericUpDown control
public void OnValueChanged(object sender, EventArgs args))
{

// Your code to handle the ValeuChanged event of the NumericUpDown control
}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

73

TrackBar

The TrackBar can be used to interact with the current scene by setting a numeric value.

Properties

Name Type Description
Name string Gets the name of the control
Enabled bool Gets the flag indicating if the control is enabled (true) or

disabled (false).
Visible bool Gets the flag indicating if the control is visible (true) or not

(false).
Value decimal Gets or sets the value contained in the control.
Minimum decimal Gets or sets the minimum value that the TrackBar Value can be

set.
Maximum decimal Gets or sets the maximum value that the TrackBar Value can be

set.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

74

ValueChanged
This event is triggered when the TrackBars controls Value property has changed.

Syntax:

void ValueChanged(object sender, EventArgs args)

Example:

public ScriptTest ()
{

InitializeComponent();

// Register handler
MyTrackBar.ValueChanged += OnValueChanged;

}

// Handles the ValueChanged event from the TrackBar control
public void OnValueChanged(object sender, EventArgs args))
{

// Your code to handle the ValeuChanged event of the TrackBar control
}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

75

ListView

The ListView can be used to display lists of items in the control panel. This object is mostly
used by binding it to a DataObject to display its contents.

Properties

Name Type Description
Name string Gets the name of the control
Enabled bool Gets the flag indicating if the control is enabled

(true) or disabled (false).
Visible bool Gets the flag indicating if the control is visible

(true) or not (false).
SelectedItems SelectedListViewItemCollection Gets the list of selected ListViewItems in the

ListView object.
SelectedIndices SelectedIndexCollection Gets the list of selected ListViewItems by index

in the ListView.Items collection.
Items ListViewItemCollection Gets the collection of ListViewItems for the

ListView. This property allows the addition and
removal of items in the ListView.

Items.Count int Gets the number of items in the ListView.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

76

SelectedIndexChanged

The event is triggered when the selected item is changed in the ListView. Register a handler if
you want to perform an operation when the SelectedItems property is changed in the
ComboBox.

Example:

Register OnSelectedIndexChanged handler with the SelectedIndexChanged event from
MyListView. The OnSelectedIndexChanged() handler will get the

public ScriptTest()
{

InitializeComponent();

MyListView.SelectedIndexChanged += OnSelectedIndexChanged;

}

// Handles the SelectedIndexChanged for MyListView

private void OnSlectedIndexChanged(object sender, EventArgs args)
{

foreach (var item in MyListView.Items.OfType<ListViewItem>())
{

// Your code to process selected ListViewItems
}

}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

77

FilePicker

The FilePicker can be used to interact with the scene by allowing files to be selected so that
File properties on other objects can be modified.

Properties

Name Type Description
Name string Gets the name of the control
Enabled bool Gets the flag indicating if the control is enabled (true) or

disabled (false).
Visible bool Gets the flag indicating if the control is visible (true) or not

(false).
File string Gets the file path selected by the file picker.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

78

FileChanged

The event is triggered when the file is changed in the FilePicker control.

Syntax:

void FileChanged()

Example

Register OnFileChanged handler with the FileChanged event from MyFilePicker so that some
processing can be performed in the OnFileChanged() handler.

public ScriptTest()
{

InitializeComponent();

MyFilePicker.FileChanged += OnFileChanged;

}

// Handles the FileChanged for MyFilePicker

private void OnFileChanged()
{

var file = MyFilePicker.File;

// You code to handle the file changed event from the FilePicker

}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

79

AssetBrowser

The AssetBrowser can be used to interact with the scene by allowing asset files to be selected
for the current projects.

Properties

Name Type Description
Name string Gets the name of the control
Enabled bool Gets the flag indicating if the control is enabled (true) or

disabled (false).
Visible bool Gets the flag indicating if the control is visible (true) or not

(false).
File string Gets the file path selected by the asset browser.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

80

FileChanged

The event is triggered when the file is selected in the AssetBrowser control.

Syntax:

void FileChanged()

Example:

Register OnFileChanged handler with the FileChanged event from MyAssetBrowser so that
some processing can be performed in the OnFileChanged() handler.

public ScriptTest()
{

InitializeComponent();

MyAssetBrowser.FileChanged += OnFileChanged;

}

// Handles the FileChanged for MyAssetBrowser

private void OnFileChanged()
{

var file = MyFilePicker.File;

// You code to handle the file changed event from the AssetBrowser

}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

81

PictureBox

The PictureBox can be used to interact with the scene by allowing images to be displayed in
the control panel.

Properties

Name Type Description
Name string Gets the name of the control
Enabled bool Gets the flag indicating if the control is enabled (true) or

disabled (false).
Visible bool Gets the flag indicating if the control is visible (true) or not

(false).
Image Image Gets or sets the image to be displayed in the picture box.

Example:

Sets the image of the picture box when the image file is selected from the system.

public ScriptTest()
{

InitializeComponent();

ImageFilePicker.FileChanged += OnFileChanged;

}

// Handles the FileChanged for ImageFilePicker
private void OnFileChanged()
{

var file = ImageFilePicker.File;

MyPictureBox.Image = new Bitmap(file);

}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

82

TimeCodeEditor

The TimeCodeEditor can be used to interact by using a timer to trigger actions or processes.

Properties

Name Type Description
Name string Gets the name of the control
Enabled bool Gets the flag indicating if the control is enabled (true) or

disabled (false).
Visible bool Gets the flag indicating if the control is visible (true) or not

(false).
Frames int Gets or sets the number of frames.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

83

FramesChanged

This event is triggered when the TimeCodeEditor controls frames have changed.

Syntax:

void FranmesChanged()

Example:

public ScriptTest()
{

InitializeComponent();

MyTimeCodeEditor.FramesChanged += OnFramesChanged;

}

// Handles the FramesChanged event for MyTimeCodeEditor
private void OnFramesChanged()
{

// You code to handle the FramesChanged event
}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

84

Canvas Objects

These controls are graphics based controls that implement the IDynamicObject and
ISceneObject interfaces, so all properties, event and methods from these interfaces are
implemented in the following objects.

Text

Object used for 2D and 3D text display.

Properties

Name Type Description
Name string Gets the name of the graphic object.
Enabled bool Gets the flag indicating if the graphics object is enabled

(true) or disabled (false).
Scene IScene Gets the scene this object belongs to.
Opacity double Gets or sets the opacity or the graphic object.
Text string Gets or sets the text for this graphic object.
Effects SceneObjectList<IEffect> Gets the list of effects associated with this graphics

object.
Animations AnimationList Gets the list of animations associated with this graphic

object.
Events EventList Gets the list of events associated with this graphic

object.
_2d _2dTextProperties Gets the 2D text properties.
_3d _3dTextProperties Gets the 3D text properties.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

85

PropertyAnimated

See PropertyAnimated in IDynamicObject Events section.

TextChanged

Event is triggered when the Text is property is changed in the Text graphics object.

Syntax:

void TextChanged(ISceneObject sceneObject)

Example:

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

86

Image

Object used for displaying images on the Canvas.

Properties

Name Type Description
Name string Gets the name of the graphic object.
Enabled bool Gets the flag indicating if the graphics object is enabled

(true) or disabled (false).
Scene IScene Gets the scene this object belongs to.
Opacity double Gets or sets the opacity or the graphic object.
Effects SceneObjectList<IEffect> Gets the list of effects associated with this graphics

object.
Animations AnimationList Gets the list of animations associated with this graphic

object.
Events EventList Gets the list of events associated with this graphic

object.
File string Gets or sets the image file to be displayed within this

graphics object.
Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

PropertyAnimated

See PropertyAnimated in IDynamicObject Events section.

ImageChanged

Event is triggered when the Image is property is changed in the Image graphics object.

Syntax:

void ImageChanged(ISceneObject sceneObject)

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

87

Example:

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

88

Clip

Object used for clips in the Canvas.

Properties

Name Type Description
Name string Gets the name of the graphic object.
Enabled bool Gets the flag indicating if the graphics object is enabled

(true) or disabled (false).
Scene IScene Gets the scene this object belongs to.
Opacity double Gets or sets the opacity or the graphic object.
Effects SceneObjectList<IEffect> Gets the list of effects associated with this graphics

object.
Animations AnimationList Gets the list of animations associated with this graphic

object.
Events EventList Gets the list of events associated with this graphic

object.
File string Gets or sets the image file to be displayed within this

graphics object.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

PropertyAnimated

See PropertyAnimated in IDynamicObject Events section.

Finished

Event is triggered when the clip finishes playing.

Syntax:

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

89

void Finished(ISceneObject sceneObject)

Example:

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

90

Cube

Object used for 3D cube object in the Canvas.

Properties

Name Type Description
Name string Gets the name of the graphic object.
Enabled bool Gets the flag indicating if the graphics object is enabled

(true) or disabled (false).
Scene IScene Gets the scene this object belongs to.
Opacity double Gets or sets the opacity or the graphic object.
Effects SceneObjectList<IEffect> Gets the list of effects associated with this graphics

object.
Animations AnimationList Gets the list of animations associated with this graphic

object.
Events EventList Gets the list of events associated with this graphic

object.
File string Gets or sets the image file to be displayed within this

graphics object.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

PropertyAnimated

See PropertyAnimated in IDynamicObject Events section.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

91

Model

Object used for model on the Canvas.

Properties

Name Type Description
Name string Gets the name of the graphic object.
Enabled bool Gets the flag indicating if the graphics object is enabled

(true) or disabled (false).
Scene IScene Gets the scene this object belongs to.
Opacity double Gets or sets the opacity or the graphic object.
Effects SceneObjectList<IEffect> Gets the list of effects associated with this graphics

object.
Animations AnimationList Gets the list of animations associated with this graphic

object.
Events EventList Gets the list of events associated with this graphic

object.
File string Gets or sets the image file to be displayed within this

graphics object.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

PropertyAnimated

See PropertyAnimated in IDynamicObject Events section.

FileChanged

Event is triggered when the File property of the Model is changed.

Syntax:

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

92

void FileChanged(ISceneObject sceneObject)

Example:

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

93

Effects

These controls are graphics effects that may be associated with graphical controls. These
objects implement the IDynamicObject and ISceneObject interfaces, so all properties, events
and methods from these interfaces are implemented in the following objets.

Properties

Name Type Description
Name string Gets the name of the graphic object.
Enabled bool Gets the flag indicating if the graphics object is

enabled (true) or disabled (false).
Scene IScene Gets the scene this object belongs to.
Opacity double Gets or sets the opacity or the graphic object.
Effects SceneObjectList<IEffect> Gets the list of effects associated with this graphics

object.
Animations AnimationList Gets the list of animations associated with this graphic

object.
Events EventList Gets the list of events associated with this graphic

object.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

PropertyAnimated

See PropertyAnimated in IDynamicObject Events section.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

94

Crop

Properties

Name Type Description
Name string Gets the name of the graphic object.
Enabled bool Gets the flag indicating if the graphics object is enabled

(true) or disabled (false).
Scene IScene Gets the scene this object belongs to.
Opacity double Gets or sets the opacity or the graphic object.
Effects SceneObjectList<IEffect> Gets the list of effects associated with this graphics

object.
Animations AnimationList Gets the list of animations associated with this graphic

object.
Events EventList Gets the list of events associated with this graphic

object.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

PropertyAnimated

See PropertyAnimated in IDynamicObject Events section.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

95

Mask

Properties

Name Type Description
Name string Gets the name of the graphic object.
Enabled bool Gets the flag indicating if the graphics object is enabled

(true) or disabled (false).
Scene IScene Gets the scene this object belongs to.
Opacity double Gets or sets the opacity or the graphic object.
Effects SceneObjectList<IEffect> Gets the list of effects associated with this graphics

object.
Animations AnimationList Gets the list of animations associated with this graphic

object.
Events EventList Gets the list of events associated with this graphic

object.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

PropertyAnimated

See PropertyAnimated in IDynamicObject Events section.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

96

Material

Properties

Name Type Description
Name string Gets the name of the graphic object.
Enabled bool Gets the flag indicating if the graphics object is enabled

(true) or disabled (false).
Scene IScene Gets the scene this object belongs to.
Opacity double Gets or sets the opacity or the graphic object.
Effects SceneObjectList<IEffect> Gets the list of effects associated with this graphics

object.
Animations AnimationList Gets the list of animations associated with this graphic

object.
Events EventList Gets the list of events associated with this graphic

object.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

PropertyAnimated

See PropertyAnimated in IDynamicObject Events section.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

97

Light

Properties

Name Type Description
Name string Gets the name of the graphic object.
Enabled bool Gets the flag indicating if the graphics object is enabled

(true) or disabled (false).
Scene IScene Gets the scene this object belongs to.
Opacity double Gets or sets the opacity or the graphic object.
Effects SceneObjectList<IEffect> Gets the list of effects associated with this graphics

object.
Animations AnimationList Gets the list of animations associated with this graphic

object.
Events EventList Gets the list of events associated with this graphic

object.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

PropertyAnimated

See PropertyAnimated in IDynamicObject Events section.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

98

Render Texture

Properties

Name Type Description
Name string Gets the name of the graphic object.
Enabled bool Gets the flag indicating if the graphics object is enabled

(true) or disabled (false).
Scene IScene Gets the scene this object belongs to.
Opacity double Gets or sets the opacity or the graphic object.
Effects SceneObjectList<IEffect> Gets the list of effects associated with this graphics

object.
Animations AnimationList Gets the list of animations associated with this graphic

object.
Events EventList Gets the list of events associated with this graphic

object.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

PropertyAnimated

See PropertyAnimated in IDynamicObject Events section.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

99

Warp

Properties

Name Type Description
Name string Gets the name of the graphic object.
Enabled bool Gets the flag indicating if the graphics object is enabled

(true) or disabled (false).
Scene IScene Gets the scene this object belongs to.
Opacity double Gets or sets the opacity or the graphic object.
Effects SceneObjectList<IEffect> Gets the list of effects associated with this graphics

object.
Animations AnimationList Gets the list of animations associated with this graphic

object.
Events EventList Gets the list of events associated with this graphic

object.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

PropertyAnimated

See PropertyAnimated in IDynamicObject Events section.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

100

Page Turn

Properties

Name Type Description
Name string Gets the name of the graphic object.
Enabled bool Gets the flag indicating if the graphics object is enabled

(true) or disabled (false).
Scene IScene Gets the scene this object belongs to.
Opacity double Gets or sets the opacity or the graphic object.
Effects SceneObjectList<IEffect> Gets the list of effects associated with this graphics

object.
Animations AnimationList Gets the list of animations associated with this graphic

object.
Events EventList Gets the list of events associated with this graphic

object.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

PropertyAnimated

See PropertyAnimated in IDynamicObject Events section.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

101

Transition

Properties

Name Type Description
Name string Gets the name of the graphic object.
Enabled bool Gets the flag indicating if the graphics object is enabled

(true) or disabled (false).
Scene IScene Gets the scene this object belongs to.
Opacity double Gets or sets the opacity or the graphic object.
Effects SceneObjectList<IEffect> Gets the list of effects associated with this graphics

object.
Animations AnimationList Gets the list of animations associated with this graphic

object.
Events EventList Gets the list of events associated with this graphic

object.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

PropertyAnimated

See PropertyAnimated in IDynamicObject Events section.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

102

Crawl

Properties

Name Type Description
Name string Gets the name of the graphic object.
Enabled bool Gets the flag indicating if the graphics object is enabled

(true) or disabled (false).
Scene IScene Gets the scene this object belongs to.
Opacity double Gets or sets the opacity or the graphic object.
Effects SceneObjectList<IEffect> Gets the list of effects associated with this graphics

object.
Animations AnimationList Gets the list of animations associated with this graphic

object.
Events EventList Gets the list of events associated with this graphic

object.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

103

PropertyAnimated

See PropertyAnimated in IDynamicObject Events section.

Example:

The scene uses a FilePicker control on the Control Panel to allow the file used in the crawl
effect to be changed while the scene is on air. It handles the FileChanged event of the
FilePicker control to stop the current crawl update the file and restart.

public ScriptTest()
{
InitializeComponent();

}

private void MyFilePicker_FileChanged()
{

var filePath = MyFilePicker.File;

if (! string.IsNullOrWhiteSpace(filePath) &&
System.IO.File.Exists(filePath))

{
MyCrawl.Stop();
MyCrawl.File = filePath;
MyCrawl.Start();

}
}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

104

Character

Properties

Name Type Description
Name string Gets the name of the graphic object.
Enabled bool Gets the flag indicating if the graphics object is enabled

(true) or disabled (false).
Scene IScene Gets the scene this object belongs to.
Opacity double Gets or sets the opacity or the graphic object.
Effects SceneObjectList<IEffect> Gets the list of effects associated with this graphics

object.
Animations AnimationList Gets the list of animations associated with this graphic

object.
Events EventList Gets the list of events associated with this graphic

object.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

PropertyAnimated

See PropertyAnimated in IDynamicObject Events section.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

105

Usage

Canvas Objects

Many canvas objects have events that can trigger C# scripting code. The figure below shows an
image of the Canvas with the toolbox objects that have events available for C# scripting
highlighted.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

106

Graphics

Text

An author can add a text object to the scene by clicking the Text button of the Toolbox
panel on the left hand side of the canvas. Once added you will see the text properties on the
right hand side of the canvas.

Click on the Events tab to view the event triggers available to the text object as seen below.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

107

Clicking on the Text Changed drop down box will display the list of items that can be triggered
when the text is changed.

Check the Text1_TextChanged item under Scripting and the Text1_TextChanged() method will
be automatically added to your scene script.

From the script editor the author may enter the code to be executed when the text objects
TextChanged event is triggered see the sample below.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

108

Sample Usage:

private void Text1_TextChanged(ISceneObject sceneObject)
{

// Enter your code here
}
Clip

An author can add a clip to the scene by clicking the Clip button of the Toolbox panel
on the left hand side of the canvas. Once added you will see the clip properties on the right
hand side of the canvas.

Click on the Events tab to view the events triggers available to the clip as below.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

109

Clicking on the Finished drop down box will display the list of items that can be triggered when
the clip finishes.

Check the Clip1_Finished item under Scripting and the Clip1_Finished() method will be
automatically added to your scene script.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

110

From the script editor the author may enter the code to be executed when the clip Finished
event is triggered see the sample below.

Sample Usage:

private void Clip1_Finished(ISceneObject sceneObject)
{

// Enter your code here
}
Image

An author can add a clip to the scene by clicking the Image button of the Toolbox
panel on the left hand side of the canvas. Once added you will see the image properties on the
right hand side of the canvas.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

111

Click on the Events tab to view the event triggers available to the image object as seen below.

Clicking on the File Changed drop down box will display the list of items that can be triggered
when the images file is changed.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

112

Check the Image1_FileChanged item under Scripting and the Image1_FileChanged() method
will be automatically added to your scene script.

From the script editor the author may enter the code to be executed when the images
FileChanged event is triggered see the sample below.

Sample Usage:

private void Image1_FileChanged(ISceneObject sceneObject)
{

// Enter your code here
}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

113

Effects

Warp

An author can add a warp effect to a scene object by clicking the Warp button of the
Toolbox panel on the left hand side of the canvas. Once added you will see the warp properties
on the right hand side of the canvas.

Click on the Events tab to view the events triggers available to the warp effect as seen below.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

114

Clicking on the Finished drop down box will display the list of items that can be triggered when
the warp effect finishes.

Check the Warp1_Finished item under Scripting and theWarp1_Finished() method will be
automatically added to your scene script.

From the script editor the author may enter the code to be executed when the warp effects
Finished event is triggered see the sample below.

Sample Usage:

private void Warp1_Finished(ISceneObject sceneObject)
{

// Enter your code here
}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

115

Transition

An author can add a transition effect to a scene object by clicking the Transition button

of the Toolbox panel on the left hand side of the canvas. Once added you will see
the warp properties on the right hand side of the canvas.

Click on the Events tab to view the events triggers available to the transition effect as seen
below.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

116

Transition before Update Events
Clicking on the Before Update drop down box will display the list of items that can be triggered
before the transition effect updates the associated scene object.

Check the Transition1_BeforeUpdate item under Scripting and the
Transition1_BeforeUpdate() method will be automatically added to your scene script.

From the script editor the author may enter the code to be executed when the transition effects
BeforeUpdate event is triggered see the sample below.

Sample Usage:

private void Transition1_BeforeUpdate(ISceneObject sceneObject)
{

// Enter your code here
}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

117

Transition after Update Events

Clicking on the After Update drop down box will display the list of items that can be triggered
before the transition effect updates the associated scene object.

Check the Transition1_AfterUpdate item under Scripting and the Transition1_AfterUpdate()
method will be automatically added to your scene script.

From the script editor the author may enter the code to be executed when the transition effects
AfterUpdate event is triggered see the sample below.

Sample Usage:

private void Transition1_AfterUpdate(ISceneObject sceneObject)
{

// Enter your code here
}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

118

Crawl

An author can add a crawl effect to a scene object by clicking the Warp button of the
Toolbox panel on the left hand side of the canvas. Once added you will see the crawl properties
on the right hand side of the canvas.

Click on the Events tab to view the events triggers available to the warp effect as seen below.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

119

Start of Line Event
Clicking on the Start Of Line drop down box will display the list of items that can be triggered
when the crawl effect is starting a new line.

Check the Crawl1_StartOfLine item under Scripting and the Crawl1_StartOfLine() method will
be automatically added to your scene script.

From the script editor the author may enter the code to be executed when the crawl effects
StartOfLine event is triggered see the sample below.

Sample Usage:

private void Crawl1_StartOfLine(ISceneObject sceneObject)
{

// Enter your code here
}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

120

End of Line Event

Clicking on the End Of Line drop down box will display the list of items that can be triggered
when the crawl effect is ending a line.

Check the Crawl1_EndOfLine item under Scripting and the Crawl1_EndOfLine() method will
be automatically added to your scene script.

From the script editor the author may enter the code to be executed when the crawl effects
EndOfLine event is triggered see the sample below.

Sample Usage:

private void Crawl1_EndOfLine(ISceneObject sceneObject)
{

// Enter your code here
}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

121

End of File Event

Clicking on the End Of File drop down box will display the list of items that can be triggered
when the crawl effect reaches the end of file.

Check the Crawl1_EndOfFile item under Scripting and the Crawl1_EndOfFile() method will be
automatically added to your scene script.

From the script editor the author may enter the code to be executed when the crawl effects
EndOfFile event is triggered see the sample below.

Sample Usage:

private void Crawl1_EndOfFile(ISceneObject sceneObject)
{

// Enter your code here
}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

122

End of Data Event

Clicking on the End Of Data drop down box will display the list of items that can be triggered
when the crawl effect is at the end of data.

Check the Crawl1_EndOfData item under Scripting and the Crawl1_EndOfData() method will
be automatically added to your scene script.

From the script editor the author may enter the code to be executed when the crawl effects
EndOfData event is triggered see the sample below.

Sample Usage:

private void Crawl1_EndOfData(ISceneObject sceneObject)
{

// Enter your code here
}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

123

Resources

Timer

Timer Properties

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

124

Finished Event

A scene author can add a timer object to the scene by clicking the Timer button in
the Toolbox panel on the left hand side. Once added they will see the timer properties on the
right hand side of the scene canvas.

The author can then add a Finished event through the properties tab that gets triggered when
the timer ends.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

125

Clicking on the Finished drop down box a list of items that can be triggered is presented. Check
the Timer1_Finished item under Scripting and the Timer1_Finished() method will be
automatically added to your scene script.

From the script editor the author may enter the code to be executed when the timed event is
triggered see the sample below.

Sample Usage:

private void Timer1_Finished(ISceneObject sceneObject)
{

// Your code here
}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

126

Timed Event
A scene author can add a timed event to be triggered from the timer properties.

Clicking the button in the Timer Events property section will add an event that can be
triggered based on the time set in the Timer column. Click the Triggers next to the Time and a
list of available items that can be triggered will be displayed. Checking the
Timer1_00_01_00_00 will add the Timer1_00_01_00_00() method automatically to the scenes
script.

From the script editor the author may enter the code to be executed when the timed event is
triggered see the sample below.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

127

Sample Usage:

private void Timer1_00_01_00_00(ISceneObject sceneObject)
{

// Your code here
}

Timer Events

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

128

Finished Event
The scene author can add a Finished event through the events tab that gets triggered when the
timer finishes.

Clicking on the Finished drop down box a list of items that can be triggered is presented. Check
the Timer1_Finished item under Scripting and the Timer1_Finished() method will be
automatically added to your scene script.

From the script editor the author may enter the code to be executed when the timed event is
triggered see the sample below.

Sample Usage:

private void Timer1_Finished(ISceneObject sceneObject)
{

// Your code here
}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

129

Started Event
The scene author can add a Started event through the events tab that gets triggered when the
timer starts.

Clicking on the Started drop down box a list of items that can be triggered is presented. Check
the Timer1_Started item under Scripting and the Timer1_Started() method will be automatically
added to your scene script.

From the script editor the author may enter the code to be executed when the timed event is
triggered see the sample below.

Sample Usage:

private void Timer1_Started(ISceneObject sceneObject)
{

// Your code here
}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

130

Stopped Event
The scene author can add a Stopped event through the events tab that is triggered when the
timer is stopped.

Clicking on the Stopped drop down box a list of items that can be triggered is presented. Check
the Timer1_Stopped item under Scripting and the Timer1_Stopped() method will be
automatically added to your scene script.

From the script editor the author may enter the code to be executed when the timed event is
triggered see the sample below.

Sample Usage:

private void Timer1_Stopped(ISceneObject sceneObject)
{

// Your code here

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

131

}

Button Events

The button allows the click event to be handled by the scene author through scripting. Below
are the various methods for adding a button to the control panel so that the click event template
code is automatically generated and added to the C# scripting code.

Toolbox

To add a new button to the control panel the scene author can click the button in
the toolbox list that appears on the left hand side of the control panel. Once added you will see
the Button properties on the right hand side of the control panel as seen below

The button properties available to the scene author are shown below. We are interested in the
Click section, which contains the list of item that can be triggered when the button is pressed.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

132

Check the Button1_Click item under the Scripting section and the system will automatically add
the Button1_Click() method to you scenes script.

From the script editor the author may enter the code to be executed when the button is clicked
see the sample below.

Sample Usage:

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

133

private void Button1_Click(object sender, EventArgs e)
{

// Add your code here

}

Keyframe Trigger

The keyframe triggers are available from the designer editor for all graphic objects.

To add a new keyframe that can be bound to a trigger you first move the timeline tracking icon

to the time offset you want the keyframe added then click the add icon . These icons
are highlighted below.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

134

You also can right click in the area below the timeline to bring up the context menu and select
Add Keyframe option.

Once the keyframe has been added you will see over in the properties section below the ability
to bind this keyframe to a trigger by clicking the Triggers drop down button.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

135

The drop down will display all the events that the keyframe can trigger. We are interested in the
Scripting option were KeyFrame1_Trigger can be checked or unchecked.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

136

Checking off the KeyFrame1_Trigger selection will automatically add the
KeyFrame1_Trigger() event handler method into the scripting code.

From the script editor the author may enter the code to be executed when the keyframe is
triggered see the sample below.

Sample Usage:

private void Keyframe1_Trigger(IKeyframe keyframe)
{

// Add your code here
}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

137

Interface

There are two types of C# scripting available in PRIME. Application scripting is a single C#
script that has an application wide scope. Scene scripting has a scope of the scene. Each
scene can have its own C# script, but there is only one application script. Both scripts share
many design attributes with only a few minor differences, which will be discussed.

Scripting Editor

Scene Scripting

The C# scripting editor for the scene is available through the designer by clicking the

toolbar button, which will display the C# scripting editor shown below.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

138

The Editor pane is what the scene author will be working in while writing the C# script. Upon
startup for the first time the pane will contain the default code template (see below) for creating
the C# script.

Default Scene Scripting Code Template (Scene Name: NewScene)

namespace PowerBox.Scripting
{

using System;
using System.Collections.Generic;
using System.Drawing;
using System.Windows.Forms;
using Chyron.PowerBox.Scene.Objects;

public partial class NewScene1
{

public NewScene1()
{

InitializeComponent();
}

}
}

Scripting Properties

To the right of the scripting panel is the properties for the script, which shows the assembly
references and error list for the code indicting syntax errors.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

139

References

The References pane lists all the assembly references used in the script. There will be the
standard Microsoft.NET assemblies as well as PRIME assemblies. The scene author can

remove references from the list by selecting them and clicking the button from the

references toolbar. To add new references, the scene author can click the
button on the references toolbar, which will launch the Reference Manager.

Assemblies
The Assemblies option, which is the default selection and will display all system wide
Microsoft.NET assemblies installed on the system. Any assembly that has already been added
to you script will appear with a check and any assembly that can be added will appear
unchecked. Checking any unchecked entry will add the reference to your C# script and allow
access to any classes available in the selected assembly. Unchecking any assembly will result
in that assembly being removed from your script and removing access to any classes available
from that assembly. Any assemblies added and/or removed through Reference Manager will be
reflected in the References pane of the C# scripting editor and will be visible when the manager
is closed.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

140

Files
The File option if selected will display all the PRIME assemblies, as well as any additional
assemblies that the user may have loaded. The first time the user will only see the pre-selected
PRIME assemblies based on the default code template. To add new assemblies that do not
already appear on the list you can click the Browse … button to launch the standard Windows
file browse dialog. Any newly added assemblies from the file browser will be automatically
checked and added to the scripts reference list. Unchecking any assembly will result in that
assembly being removed from your script and removing access to any classes available from
that assembly. Any assemblies that are displayed in red text will indicate that the assembly dll
cannot be found.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

141

Error List

The Error List pane will display any errors that are detected in the script file. Some errors may
occur when the script editor is loaded such as assembly loading errors. These errors indicate
that the assembly referenced in the editor could not be loaded for some reason. By clicking on
the button on the toolbar the system will attempt to load the references, check the
syntax of the C# script display any errors in the Error List and indicate the number of errors

.

From the errors shown above, it indicates that a “; is expected” on line 15 in the C# script and
that MethodDoesNotExist() does not exist in the context. The scene author can double click on
the error and it will put the cursor at the beginning of the script line that caused the error.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

142

Scripting Properties

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

143

Appendix

Text File Reader

Scene allows the user to select a file to be read in line by line and displayed on the Canvas
using a graphic Text object. Action is added to have a fade in and fade out effect.

Canvas

Object Name Description
Text MyTextObject Used to display

text from the
file.

Control Panel

Object Name Description
Button StartButto

n
Used to start and stop
the file reading.
Events
Click
StartButton_Click

FilePic
ker

TextFilePic
ker

Used to select file from
the file system.
Events
FileChanged
TextFilePicker_FileCha
nged

TextBo
x

LineTextB
ox

Used to display the
text that is being
displayed in Canvas.
Binding
LineTextObject.Text

Action FadeActio
n

Used to have the text
fade in and fade out.
Trigger
LineTextObject.TextCh
anged

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

144

Script

To get the file to be read each time the action is done using a Timer object by setting the interval
to the FadeAction’s length in milliseconds. The timer is then set to AutoReset so that after an
Elapsed event is triggered it will restart automatically. We register the OnTimerElapsed() event
handler to the timers Elapsed event but we don’t start the timer yet. The file to be read is
selected by using the FilePicker control on the control panel. Once a valid file is selected,
clicking button will open a file stream for reading, read the first line, start the timer and change
the buttons text to “Stop”. Clicking the button when is read “Stop” will stop the timer, close the
file and change the buttons text back to “Start”.

namespace PowerBox.Scripting
{

using System;
using System.Collections.Generic;
using System.Drawing;
using System.Windows.Forms;
using Chyron.PowerBox.Scene.Objects;
using Chyron.Enterprise.Infrastructure.Parameters;
using System.IO;
using System.Timers;

public partial class TextFileReader
{

private string filePath;
private System.Timers.Timer timer;
private StreamReader reader;

public TextFileReader()
{

InitializeComponent();

StartButton.Enabled = false;

timer = new System.Timers.Timer((double)(Action1.Length.Seconds*1000));
timer.AutoReset = true;

timer.Elapsed += OnTimerElapsed;
}

// Handles the Elapsed event from the timer
private void OnTimerElapsed(object sender, ElapsedEventArgs e)
{

ReadNextLine();
}

//Handles the FileChanged event from the FilePicker
private void TextFilePicker_FileChanged()
{

TextFilePicker.ForeColor = Color.Black;

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

145

filePath = TextFilePicker.File;

StartButton.Enabled = (!string.IsNullOrWhiteSpace(filePath) &&
File.Exists(filePath));

}

// Reads the next line from the file and updates the LineTextObject's Text property
private void ReadNextLine()
{

if (reader != null)
{

if (! reader.EndOfStream)
{

var line = reader.ReadLine();

LineTextObject.Text = line;
}

}
}

// Handles the Click event for the StartButton
private void StartButton_Click(object sender, EventArgs e)
{

if (StartButton.Text == "Start")
{

if (File.Exists(filePath))
{

try
{

reader = new StreamReader(new FileStream(filePath, FileMode.Open));
}
catch (Exception ex)
{

TextFilePicker.ForeColor = Color.Red;
this.Scene.LogError(ex.Message);
return;

}

}

ReadNextLine();

timer.Start();

StartButton.Text = "Stop";
}
else
{

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

146

timer.Stop();

if (reader != null)
{

reader.Close();
reader = null;

}

StartButton.Text = "Start";
}

}
}

}

Side Show

Scene allows the user to select a file that contains a list of images or a directory that contains
images to be read one at a time and display the image on the canvas. A fade in / fade out action
on the Canvas using a graphic Text object. Action is added to have a fade in and fade out effect.

Canvas

Object Name Description
Image SlideImage Used to

display the
image on the
canvas.

Text SlideImageName Used to
display the
image name
on the
canvas.

Control Panel

Objec
t

Name Description

Butto
n

ButtonSlide
Show

Used to start and stop
the slide show.
Events
Click
ButtonSlideShow_Clic
k

TextB
ox

ImageFileTe
xtBox

Use to display the
image filename.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

147

TextB
ox

ImageFolde
rTextBox

Used to enter or
display the folder to
search for images.
Events
TextChanged
ImageFolderTextBox_
TextChanged

FilePic
ker

ImageListFil
ePicker

Used to select the file
containing a list of
images to be used,
Events
FileChanged
ImageListFilePicker_Fi
leChanged

Butto
n

BrowserBut
ton

Used to launch the
folder browser to
select the directory to
search for images.
Events
Click
BrowserButton_Click

Actio
n

FadeAction Used to have the
image fade in and
fade out.
Trigger
SlideImage.FileChang
ed

Param
eter

ButtonStart
Text

Contains the text to
be displayed on the
ButtonSlideShow to
indicate it will Star the
slide show.

Param
eter

ButtonStop
Text

Contains the text to
be displayed on the
ButtonSlideShow to
indicate that it will
Stop the slide show.

Param
eter

ImageExten
sions

Contains a commas
delimited list of valid
image file extensions.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

148

Script

This script uses some advance features such as threading to perform the actions required. The
image list is created as a stack so that it is processed only once as each item is popped off and
displayed. The list is created when the StartButton is clicked and the Tag property is equal to
SlideShowOptions.Start enumeration value. The control panel’s controls that are used by the
slide show process are disabled so that entries cannot be changed while the list is being
processed. The image list is either generated using the image text file, which contains a list of
images and their paths or a directory that contains images. A separate thread is started to
perform the read so that other actions can be done without interruption. When the list of images
has been exhausted the control panels state is set back so that a new slide show can be
performed. At any point, while the image list is being processed the StartButton may be clicked
to Stop and reset the control panel back.

namespace PowerBox.Scripting
{

using System;
using System.Collections.Generic;
using System.Drawing;
using System.Windows.Forms;
using Chyron.PowerBox.Scene.Objects;
using Chyron.PowerBox.Scene.Controls;
using Chyron.PowerBox.Scene.Text;
using System.Linq;
using System.IO;

public partial class SlideShow
{

private enum SlideShowOptions
{

Start,
Stop

};

private bool allfiles = false;
private string filePath;

private bool cancel = false;
private Stack<string> imageList = new Stack<string>();
private string startText = "Start Slide Show";
private string stopText = "Stop Slide Show";
private string [] extensions = new string [0];
private System.Windows.Forms.FolderBrowserDialog folderBrowser =

new System.Windows.Forms.FolderBrowserDialog();

public SlideShow()
{

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

149

InitializeComponent();

ButtonSlideShow.Enabled = false;

InitializeScript();

}

// initialize the script
private void InitializeScript()
{

var parameter = Scene.Parameters.Find("ButtonStartText");
if (parameter != null)
{

startText = parameter.Value as string;
}

parameter = Scene.Parameters.Find("ButtonStopText");
if (parameter != null)
{

stopText = parameter.Value as string;
}

extensions = ImageExtensions.Value.ToLower().Split(new char[] { ',' });

allfiles = extensions.Contains("*") || extensions.Contains("*.*");
ButtonSlideShow.Text = startText;
ButtonSlideShow.Tag = SlideShowOptions.Start;

ImageFileTextBox.Text = "";
Scripting.File = "";
Scripting.Opacity = 0;

}

// Creates the image list from either the directory or the image list file
private void CreateImageList()
{

imageList.Clear();

BrowseButton.Enabled = f
ImageFileTextBox.Text = "Creating Image List";

if (File.Exists(filePath))
{

using (StreamReader reader = new StreamReader(filePath))
{

while (!reader.EndOfStream)
{

var line = reader.ReadLine();

AddImageFile(line);

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

150

}
}

}
else if (Directory.Exists(filePath))
{

foreach (var file in Directory.GetFiles(filePath, "*.*"))
{

AddImageFile(file);
}

}
}

// Add image file to the stack
private void AddImageFile(string file)
{

// image files extension
var extension = System.IO.Path.GetExtension(file);

// image file must exist and its extension must be allowed
if (File.Exists(file) && (allfiles ||

(!allfiles && extension.Contains(extension))))
{

imageList.Push(file);
}

}

// Enables the slide show
private void EnableSlideShow()
{

// make sure we are executing on the GUI thread
if (this.InvokeRequired)
{

Invoke(new Action(EnableSlideShow));
}
else
{

SlideImageName.Text = "";
Scripting.Opacity = 0;

ImageFileTextBox.Text = "";

ImageFileTextBox.Enabled = true;
BrowserButton.Enabled = true;
ImageListFilePicker.Enabled = true;

ButtonSlideShow.Enabled = true;
ButtonSlideShow.Text = startText;
ButtonSlideShow.Tag = SlideShowOptions.Start;
ButtonSlideShow.BackColor = Color.LightSteelBlue;

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

151

Log("");
}

}

// Handle the button click event for the slide show
private void ButtonSlideShow_Click(object sender, EventArgs e)
{

var option = (SlideShowOptions)ButtonSlideShow.Tag;

if (option == SlideShowOptions.Start)
{

CreateImageList();

if (imageList.Count > 0)
{

cancel = false;

ButtonSlideShow.BackColor = Color.Red;

ImageFileTextBox.Enabled = false;
BrowserButton.Enabled = false;
ImageListFilePicker.Enabled = false;

ButtonSlideShow.Text = stopText;
ButtonSlideShow.Tag = SlideShowOptions.Stop;

System.Threading.Tasks.Task.Factory.StartNew(()=>
{

while (imageList.Count > 0 && !cancel)
{

var image = imageList.Pop();
if (System.IO.File.Exists(image))
{

ImageFileTextBox.Text = image;
Scripting.File = image;
SlideImageName.Text =

System.IO.Path.GetFileNameWithoutExtension(image);
}

System.Threading.Thread.Sleep(FadeAction.Length.TimeSpan);

}

if (cancel)

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

152

{
FadeAction.Stop();

Log("Slideshow cancelled");
}
else

Log("Slideshow done");

EnableSlideShow();

});
}

}
else
{

ButtonSlideShow.BackColor = Color.Gray;
ButtonSlideShow.Enabled = false;
cancel = true;

}

}

// Handles the TextChanged event for the ImageFolderTextBox control
private void ImageFolderTextBox_TextChanged(object sender, EventArgs e)
{

if (Directory.Exists(ImageFolderTextBox.Text))
{

filePath = ImageFolderTextBox.Text;
ImageListFilePicker.File = "";
ButtonSlideShow.Enabled = true;

}
else
{

if (File.Exists(ImageListFilePicker.File))
{

ButtonSlideShow.Enabled = true;
}
else
{

ButtonSlideShow.Enabled = false;

filePath = "";
}

}

}

// Handles the Click event for the BrowseButton control
private void BrowserButton_Click(object sender, EventArgs e)
{

folderBrowser.Description = "Select Image Directory";

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

153

folderBrowser.ShowNewFolderButton = false;

if (folderBrowser.ShowDialog(this) == System.Windows.Forms.DialogResult.OK)
{

ImageFolderTextBox.Text = folderBrowser.SelectedPath;
}

}

// Handles the FileChanged event from the ImageListFilePicker control
private void ImageListFilePicker_FileChanged()
{

if (File.Exists(ImageListFilePicker.File))
{

filePath = ImageListFilePicker.File;
ImageFolderTextBox.Text = "";
ButtonSlideShow.Enabled = true;

}
else
{

if (Directory.Exists(ImageFolderTextBox.Text))
{

ButtonSlideShow.Enabled = true;
}
else
{

ButtonSlideShow.Enabled = false;
filePath = "";

}

}
}

}

}

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

154

VB-JSCRIPT
PRIME also includes support for VBScript and JScript. The common API can be utilized to
interact with and control the playback of scenes.

The Model

There is only one PRIME application instance running on a system at a time. The application
services each request through the API, providing the ability to retrieve and modify the state of
scenes within the currently selected project.

The Scene is the basic PRIME structure, containing multiple graphical and hardware elements
called Objects as well as Controls that define an interface to configurable aspects of the
scene. Scenes also contain one or more Actions, which define object animations, and may be
triggered through the scripting API. Currently the actions do not expose their underlying
keyframes and associated properties, though this may be added in future revisions of the API.

Each scene also has a collection of customizable User Parameters, which allows scripts to
store and retrieve context information at runtime.

Script Execution and Context

Scripts associated with a scene at design time are executed in-process. In-process scripts are
provided context and a handle on the PRIME COM API in the form of global keywords that are
accessible from the script (see Global Keywords).

When PRIME is running with administrator privileges, scripts may also be executed out of
process (e.g. by double-clicking a VBS file on the Windows desktop or from a VBScript editor),
although these scripts must tap into the PRIME COM API differently since they have no local
context:

Dim Prime
Set Prime = CreateObject("Prime", "localhost")

Future revisions of scripting may include a DCOM implementation so that scripts will have
access to the PRIME API from any COM environment even if the PRIME application has not
been started.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

155

Scene Designer

The user may incorporate scripts using VBScript or JScript by adding a Script resource to their
scene. The resource can be added by clicking the Script button in the Designer Toolbox as seen
below:

Once added, the Script resource may be customized in a variety of ways, but the most important
configuration decision is deciding how script execution will occur. The Mode property dictates
whether scripts will execute when keyframes animate or in response to designated scene
events.

Script resources default to Timeline mode, indicating that the object will execute the selected file
at designated keyframes on the timeline. Each of the other properties listed are keyframeable;
consequently, a single Script resource may be used to execute multiple script files: each
keyframe will a different file property affected.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

156

● File: The VBScript or JScript file that will be executed. Browsing for a file will initially
suggest files local to the current project, but the user may opt to select a completely
external file.

● Synchronization: This property specifies whether the script will be executed
synchronously or asynchronously. Synchronous script execution can impede the
execution of other scripts however this may be preferable and is the default behavior.
Asynchronous script executions may occur concurrently.

● Context: Indicates whether the script will be executed In Process (with context of the
executing scene) or Out of Process (no context). Generally, scripts that will interact with
the PRIME API should be executed In Process. Scripts that don’t require the PRIME
API, such as those that download data on some interval should be executed Out of
Process.

● Timeout: Indicates how long a script should allow for execution before timing out (and
forcibly terminated). This property is used to prevent long-running scripts from interfering
with playout operation or performance.

Scripts in this mode may also be triggered in the standard PRIME trigger list control as typically
seen when configuring object or scene events. For example, a button control can be added and
configured to execute a Script resource as seen below.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

157

This would execute the script file as configured on the default keyframe of the resource.

Alternatively, the Mode property can be changed to Event Driven. Additional properties become
available when this value is set.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

158

● Start Event: Indicates the type of event that will cause the script to execute.

o Never: Script execution is disabled.
o After Close: The script will execute after the scene is closed.
o After Load: The script will execute after the scene is loaded.
o After Play: The script will execute after the scene is taken to air.
o After Stop: The script will execute after the scene is transferred off air.
o After Update: The script will execute after a specific property of a particular object

has changed.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

159

o Before Close: The script will execute before the scene is closed.
o Before Play: The script will execute before the scene is taken to air.
o Before Stop: The script will execute before the scene is transferred off air.
o Before Update: The script will execute before a specific property of a particular

object has changed. The executing script may change the value prior to its
application.

o While Playing: The script will execute only when the scene is on air.

● Interval: If enabled, specifies that the script should execute repeatedly on a defined
interval (in seconds). For example, the user could configure a script that executes every
five seconds while on air by setting the Start Event to While Playing and the checking
the Interval property.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

160

Object Hierarchy

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

161

Global Keywords

Below are reserved keywords that may be used by an in-process script to reference the PRIME
API.

ActiveScene

Returns the scene currently executing the script.

Sample Usage:

ActiveScene.Play ' Play the current scene

Prime

Returns a top-level object that can be used to interact with the currently running PRIME. This
object is particularly useful for cross-scene scripting, meaning that a script in one scene can
affect the state of other scenes.

Sample Usage:

Dim scene
Set scene = Prime.Scene("1") ' Active scene might not be 1

scene.Play

Parameters

Returns a collection of script parameters that contains useful information about the script being
executed. Currently, only four parameters are possible: Control Name, Control Value, Id and
Script Name.

Whenever a script is executed from PRIME, the script is provided with a collection of
parameters that may be of use to the executing script. Under most situations, this is currently
limited to the identifier of the scene (Id) that caused execution of the script as well as the name
associated with the executing script (Script Name), however, when a script executes as a result
of an update to a control panel control, two additional parameters are made available.

Script
Param
eter

Example
VBScript
Usage

Available When? Read
only?

Id Parameter.Item(
"Id")

Always Yes

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

162

Contr
ol
Name

Parameter.Item(
"Control Name")

Before, After Update Yes

Contr
ol
Value

Parameter.Item(
"Control Value")

Before, After Update No

Script
Name

Parameter.Item(
"Script Name")

Always Yes

It may be desirable to execute a script that can transform an incoming data value before
applying the value to a control panel control. This can be accomplished by adding a Script
resource to the scene in Event Driven mode, marking the Execute Script property Before
Update and setting the Target property to the desired control. At this point, the script will
execute immediately before a value is applied to the target control, allowing the script author to
intercept the value and make any desired modifications.

Modifying the incoming value requires that the Control Value parameter is used. Simply set the
value of the Script Parameter as seen below:

Parameter.Item("Control Value") = "New Value"

In the example above, New Value will be applied to the control after the script completes
executing instead of the original value.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

163

API Reference

Prime

The global keyword Prime returns an application proxy, which provides hooks into the PRIME
API. This is the top level object that allows a script author to interact with scenes in the currently
selected project.

AllScenes

Returns a collection of all scenes in the currently selected project.

Sample Usage:

Dim scene
' Iterate through each scene
For i = 0 to Prime.AllScenes.Count – 1

' Here we can do something with each scene.
Set scene = Prime.AllScenes.Item(i)
' For example, show a message box with the scene ID.
MsgBox scene.SceneId

Next

OpenScenes

Returns a collection of all scenes that are currently open in the selected project.

Sample Usage:

Dim scene
' Iterate through each open scene
For i = 0 to Prime.OpenScenes.Count – 1

' Here we can do something with each scene.
Set scene = Prime.OpenScenes.Item(i)
' For example, show a message box with the scene ID.
MsgBox scene.SceneId

Next

Parameters

Returns a collection of project parameters which are thus independent of scenes. Currently only
two parameters are available by default:

Parameter
Name

Example VBScript Usage Value?

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

164

Last Automation
Command Text Prime.Parameter.Item("Last Automation Command Text")

Command text of the
most recently received
Intelligent Interface

command.

Last Automation
Command Time Prime.Parameter.Item("Last Automation Command Time")

The date/time when the
last Intelligent Interface
command was received.

For additional details on using the parameter collection, see the Parameters section.

Scene(id As String)

Returns a scene with the specified name, if one can be found. If the scene exists in the project,
then that scene will be returned. If a matching scene cannot be found, then Nothing is
returned.

Sample Usage:

Dim scene
Set scene = Prime.Scene("1")

' Check if the scene was returned
If Not(scene is Nothing) Then

MsgBox "The scene was returned!"
Else

MsgBox "Failed to get scene!"
End If

SceneExists(id As String)

Returns true if a scene with the specified name exists in the current PRIME project. Otherwise,
returns false.

Sample Usage:

If Prime.SceneExists("1") Then
MsgBox "The scene was found!"

Else
MsgBox "The scene was not found!"

End If

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

165

SceneCollection

A collection of scenes returned by either Prime.AllScenes or Prime.OpenScenes.

Count

The number of scenes in the collection.

Sample Usage:

' Display the number of open scenes
MsgBox Prime.OpenScenes.Count

Item(index)

Returns a scene at the specified index in the collection.

Sample Usage:

Dim scene
' Iterate through each scene
For i = 0 to Prime.AllScenes.Count – 1

' Here we can do something with each scene.
Set scene = Prime.AllScenes.Item(i)
' For example, show a message box with the scene ID.
MsgBox scene.SceneId

Next

CloseAll

Closes all scenes in the scene collection.

Sample Usage:

Prime.AllScenes.CloseAll

StopAll

Stops all scenes in the scene collection.

Sample Usage:

Prime.AllScenes.StopAll

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

166

Scene

Although scripting in PRIME can be used without involving the PRIME API, perhaps the most
powerful use of the feature is for interacting with scenes in the project. Use of the PRIME API
allows a script author the ability to affect the state of scenes, store and retrieve context
information for later use by other scenes or scripts, and a plethora of other features.

Scenes may be referenced by the script author in one of two ways.

1. The global ActiveScene keyword returns the scene that is currently executing the script.
This keyword may be used anywhere in the script.

ActiveScene.Play ' Play the current scene

2. The global Prime keyword can be used to access any scene in the Prime database.

Prime.Scene("1").Play ' Play scene with ID 1

Close

Closes the scene, if the scene is not already closed.

Sample Usage:

Dim scene
Set scene = Prime.Scene("1")

scene.Close

Control(name)

Returns a control panel control with the specified name, if the scene’s control panel contains
one. If a matching control cannot be found, then Nothing is returned. An exception will be
thrown if this property is accessed before the scene has been opened.

Sample Usage:

Dim control
Set control = ActiveScene.Control("Text Box 1")

' Check if the control was returned
If Not(control is Nothing) Then

MsgBox "The control was returned!"
Else

MsgBox "Failed to get control!"
End If

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

167

Controls

Returns a collection of all control panel controls found in the specified scene. An exception will
be thrown if this property is accessed before the scene has been opened.

Sample Usage:

Dim scene, control
Set scene = ActiveScene

' Iterate through each control in the control panel
For i = 0 to scene.Controls.Count – 1

' Here we can do something with each control.
Set control = scene.Controls.Item(i)
' For example, show a message box with the control name.
MsgBox control.Name

Next

Load

Loads the scene regardless of its state.

Sample Usage:

Dim scene
Set scene = Prime.Scene("1")

scene.Load

Object(name As String)

Returns for an object with the specified name, if the scene contains one. If a matching object
cannot be found, then Nothing is returned. An exception will be thrown if this property is
accessed before the scene has been opened.

Sample Usage:

Dim sceneObject
Set sceneObject = ActiveScene.Object("Text 1")

' Check if the object was returned
If Not(sceneObject is Nothing) Then

MsgBox "The object was returned!"
Else

MsgBox "Failed to get object!"
End If

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

168

Objects

Returns an enumeration of all objects in the specified scene. An exception will be thrown if this
property is accessed before the scene has been opened.

Sample Usage:

Dim scene, object
Set scene = ActiveScene

' Iterate through each object in the scene
For i = 0 to scene.Objects.Count – 1

' Here we can do something with each object.
Set object = scene.Objects.Item(i)
' For example, show a message box with the object name.
MsgBox object.Name

Next

Open

Opens the scene, re-opening the scene if it is already open.

Sample Usage:

Dim scene
Set scene = Prime.Scene("1")

scene.Open

Parameters

Returns a collection of user parameters currently associated with the scene. For additional
details on working with parameters, see the Parameters section.

Play

Plays the scene regardless of its state. If the scene is already playing, the scene will first be
stopped and then replayed.

Sample Usage:

Dim scene
Set scene = Prime.Scene("1")

scene.Play

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

169

SceneId

Returns the name of this scene. Aliasing functionality previously available in Channel Box is no
longer supported.

Sample Usage:

Dim scene
Set scene = ActiveScene

MsgBox scene.SceneId

SceneState

Gets an integer indicating the current state of this scene.

● 2 if the scene is closed
● 4 if the scene is loaded
● 8 if the scene is loading currently
● 16 if the scene is opened
● 32 if the scene is playing

Sample Usage:

Dim scene
Set scene = Prime.Scene("1")

' Check if the scene is playing
If scene.SceneState = 32 Then

' Playing, so stop the scene
scene.Stop

Else
' Not playing, so play the scene
scene.Play

End If

Stop

Stops the scene, if it is playing.

Sample Usage:

Dim scene
Set scene = Prime.Scene("1")

scene.Stop

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

170

Control

Each scene has a set of controls that are collectively referred to as the control panel. These
controls are exposed to scripting, providing specialized properties and functions pertinent to
each control type. All controls have two common properties, however, that can be used to
identify the control and its supported functionality.

Name

Returns the name of this control.

Sample Usage:

Dim control
Set control = ActiveScene.Control("Button 1")

' Check if the control was returned
If Not(control is Nothing) Then

MsgBox control.Name
Else

MsgBox "Failed to get the control!"
End If

Type

Gets an integer indicating the type of this control. Currently labels, group boxes, and video
proxies are unavailable through the API.

● 2 if the control is a button
● 3 if the control is a check box
● 4 if the control is a combo box
● 5 if the control is a file picker
● 10 if the control is a radio button
● 11 if the control is a rich text editor
● 12 if the control is a numeric up/down.
● 13 if the control is a text box
● 14 if the control is a time code editor

Sample Usage:

Dim scene, control
Set scene = ActiveScene

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

171

For i = 0 to scene.Controls.Count – 1
Set control = scene.Controls.Item(i)

' Only display the names of TextBoxes
If control.Type = 13 Then

MsgBox control.Name
End If

Next

Button

The Button can be used to interact with a control panel button.

Pressed

For state buttons, this property may be used to change or retrieve the current state of the
button. True values correspond to the button being on, while false indicates that the button is off.
For standard push buttons, this property may be used to simulate a button press by setting the
value to true. This property will always return false for push buttons and setting its value to false
should have no effect.

Sample Usage:

Dim button
Set button = ActiveScene.Control("Button 1")

If Not(button is Nothing) Then
' Check if state button is pressed
If button.Pressed Then

' It is, so reset the button!
button.Pressed = False

End If
Else

MsgBox "Failed to get the button!"
End If

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

172

CheckBox

The CheckBox can be used to interact with a control panel check box.

Checked

This property returns true if the check box is currently checked, otherwise false. The property
may also be used to set the state of the check box.

Sample Usage:

Dim checkbox
Set checkbox = ActiveScene.Control("Check Box 1")

If Not(checkbox is Nothing) Then
' Check if state check box is checked
If checkbox.Checked Then

' It is, so uncheck the checkbox!
checkbox.Checked = False

End If
Else

MsgBox "Failed to get the checkbox!"
End If

ComboBox

The ComboBox can be used to interact with a control panel combo box.

ItemCount

Returns the number of items in the combo box drop down.

Sample Usage:

Dim combobox
Set combobox = ActiveScene.Control("Combo Box 1")

If Not(combobox is Nothing) Then
MsgBox "There are " + combobox.ItemCount + " items in the combo box"

Else
MsgBox "Failed to get the combo box!"

End If

Items

Returns an enumeration of the items in the combo box drop down. Each item corresponds to a
text string visible in the drop down.

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

173

Sample Usage:

Dim combobox
Set combobox = ActiveScene.Control("Combo Box 1")

If Not(combobox is Nothing) Then
For Each item in combobox.Items

MsgBox "Item: " + item
Next

End If

SelectedItem

Gets or sets the text string of the item currently selected in the combo box. You may only set a
value using a text string that already exists in the combo box. All other updates to the selected
item will be ignored.

Sample Usage:

Dim combobox
Set combobox = ActiveScene.Control("Combo Box 1")

If Not(combobox is Nothing) Then
MsgBox "Selected Item: " + combobox.SelectedItem

' Now change the selected item
' This update only works if Item 2 exists in the combo box
combobox.SelectedItem = "Item 2"

End If

GetItemValue(item)

Each item in a combo box may have an underlying value associated with it; for example, a
combo box may display a shorter text string that may actually refer to a full file path. This
function may be used to retrieve the actual value when given the visible item value. If this
function is passed a text string that does not exist in the combo box, then Nothing is returned.

Sample Usage:

Dim combobox
Set combobox = ActiveScene.Control("Combo Box 1")

If Not(combobox is Nothing) Then
MsgBox "Selected Item: " + combobox.SelectedItem

' Now display the actual value, which may be different
MsgBox "Selected Item Value: " + combobox.GetItemValue(combobox.SelectedItem)

End If

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

174

FilePicker

The FilePicker can be used to interact with a control panel file picker.

Path

Gets or sets the file path currently in the file picker control.

Sample Usage:

Dim filepicker
Set filepicker = ActiveScene.Control("File Picker 1")

If Not(filepicker is Nothing) Then
MsgBox "Current File Path: " + filepicker.Path

filepicker.Path = "C:\Test.jpg"
Else

MsgBox "Failed to get the filepicker!"
End If

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

175

RadioButton

The RadioButton can be used to interact with a control panel radio button.

Selected

This property returns true if the radio button is currently selected, otherwise false. The property
may also be used to set the state of the radio button.

Sample Usage:

Dim radiobutton
Set radiobutton = ActiveScene.Control("Radio Button 1")

If Not(radiobutton is Nothing) Then
' Check if state radio button is selected
If radiobutton.Selected Then

' It is, so reset the radiobutton!
radiobutton.Selected = False

End If
Else

MsgBox "Failed to get the radio button!"
End If

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

176

RichTextEditor

The RichTextEditor can be used to interact with a control panel rich text editor.

Text

Gets or sets the text currently in the rich text editor control.

Sample Usage:

Dim texteditor
Set texteditor = ActiveScene.Control("Rich Text Editor 1")

If Not(texteditor is Nothing) Then
MsgBox "Current Text: " + texteditor.Text

texteditor.Text = "Hello, Goodbye"
Else

MsgBox "Failed to get the text editor!"
End If

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

177

Numeric Up/Down

The Spinner can be used to interact with a control panel numeric up/down.

Value

Gets or sets the integer value currently in the numeric up/down control.

Sample Usage:

Dim spinner
Set spinner = ActiveScene.Control("Spinner 1")

If Not(spinner is Nothing) Then
MsgBox "Current Value: " + spinner.Value

spinner.Value = 100
Else

MsgBox "Failed to get the spinner!"
End If

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

178

TextBox

The TextBox can be used to interact with a control panel text box.

Text

Gets or sets the text currently in the text box control.

Sample Usage:

Dim textbox
Set textbox = ActiveScene.Control("Text Box 1")

If Not(textbox is Nothing) Then
MsgBox "Current Text: " + textbox.Text

textbox.Text = "Hello, Goodbye"
Else

MsgBox "Failed to get the textbox!"
End If

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

179

TimeCodeEditor

The TimeCodeEditor can be used to interact with a control panel time code editor.

Duration

Gets or sets the current value of the time code editor in the form “HH:MM:SS”.

Sample Usage:

Dim timeCodeEditor
Set timeCodeEditor = ActiveScene.Control("Time Code Editor 1")

If Not(timeCodeEditor is Nothing) Then
MsgBox "Current Duration: " + timeCodeEditor.Duration

timeCodeEditor.Duration = "10:20:30"
Else

MsgBox "Failed to get time code editor!"
End If

Frames

Gets or sets the number of frames currently specified by the value currently in the time code
editor control. This value depends on the frame rate used by the scene.

Sample Usage:

Dim timeCodeEditor
Set timeCodeEditor = ActiveScene.Control("Time Code Editor 1")

If Not(timeCodeEditor is Nothing) Then
MsgBox "Current Frames: " + timeCodeEditor.Frames

timeCodeEditor.Frames = 100
Else

MsgBox "Failed to get time code editor!"
End If

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

180

Object

Each scene contains a collection of graphical and hardware elements called Objects, such as
crawls and images, which are exposed to scripting using the Objects enumeration or Object
function of a scene. Currently only object names are exposed, although additional functionality
may be added in the future.

Name

Returns the name of this object.

Sample Usage:

Dim sceneObject
Set sceneObject = ActiveScene.Object("Text")

MsgBox sceneObject.Name ' Should display Text

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

181

Action

The Action can be used to interact with an animation of a scene. Actions can be accessed and
used to trigger their underlying actions as follows:

Sample Usage:

Dim sceneAction
Set sceneAction = ActiveScene.Action("Hide")

sceneAction.Trigger 'Hide will be triggered

Name

Returns the name of this action, as apparent in the Prime Scene Builder at design time.

Sample Usage:

Dim sceneAction
Set sceneAction = ActiveScene.Action("Hide")

MsgBox sceneAction.Name ' Hide

Trigger

Triggers this action.

Sample Usage:

Dim action
Set sceneAction = ActiveScene.Action("FadeOff")

' Check if the action was returned
If Not(sceneAction is Nothing) Then

' Activate the animation
sceneAction.Trigger

Else
MsgBox "Failed to get an action!"

End If

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

182

Parameters

Scene authors can store and retrieve contextual information through the PRIME Scripting API
by using either the top level PRIME project parameter collection (available as Prime.Parameters)
or the parameter collection of a particular scene (available either through ActiveScene.Parameters

or Prime.Scene("1").Parameters). The difference between the two styles is that the PRIME
parameter collection persists as long as the application is running (or until the current project is
changed), whereas the parameter collection of each scene is only persisted for as long as the
scene is open. Once the scene is closed, all changes to the parameter collection are NOT
persisted and upon reopening the scene, the parameters will have reverted to their initial state.
The initial state of a scene parameter collection can be configured during the scene authoring
process in the PRIME Scene Designer.

Both scene and project parameter collections can be accessed via scripting, which can retrieve
or modify the values of existing parameters, add entirely new parameters or remove those that
already exist.

Item(name As String)

Gets or sets the value of a parameter with the specified name.

Sample Usage:

' Display the current value of Name
MsgBox ActiveScene.Parameters.Item("Name")

' Change the value of Name
ActiveScene.Parameters.Item("Name") = "Jeff"

Items

Returns an enumeration of all parameters in the specified scene. An exception will be thrown if
this property is accessed before the scene has been opened.

Sample Usage:

' Iterate through each parameter in the scene
For Each action in ActiveScene.Parameters.Items

MsgBox parameter.Name & " = " & parameter.Value
Next

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

PRIME API & Scripting
User Guide

183

Contains(name As String)

Returns true if the parameters collection contains a parameter with the specified name.

Sample Usage:

If ActiveScene.Parameters.Contains("Name") Then
MsgBox "Parameter exists!"

End If

Remove(name As String)

If the collection contains a parameter with the specified name, the parameter is removed.

Sample Usage:

ActiveScene.Parameters.Remove("Name")

If Not ActiveScene.Parameters.Contains("Name") Then
MsgBox "Parameter no longer exists!"

End If

PRIME C# API Interaction

Although PRIME supports the original Channel Box VBScript API, there is additional integration
with the C# API. In Process scripts now automatically have keywords defined for all objects
within the executing scene. Each object provides access to as much of the C# API as possible,
varying in levels of support from object type to object type. For example, accessing a Text Box
control within the scene no longer requires use of the ActiveScene keyword. Instead the Text
Box control may be accessed directly using its script friendly name:

' Supported, but no longer necessary!
' Dim textBox
' Set textBox = ActiveScene.Control("Text Box 1")
' textBox.Text = "ABC"

TextBox1.Text = "ABC"

The script-friendly name for an object follows the pattern below:

● Spaces are removed (e.g. "Text Box 1" becomes "TextBox1")
● Underscores are added (e.g. "123" becomes "_123")

FOR MORE INFORMATION ABOUT CHYRON VISIT:
HTTP://CHYRON.COM/

http://chyronhego.com/

