
PRIME Plugin User Guide
Version 4.9

The Prime Graphics Platform defines a plugin architecture that allows for custom behavior to
extend the usability of the software using .NET classes created in Visual Studio. This includes
the ability to define: custom objects and effects that can be added to scenes, editors to adjust
values for these objects and effects, runtime logic for the objects and effects, custom
application-wide settings for the plugin, and editors to adjust values for the application wide
settings.

To begin, create a new Class Library project in Visual Studio targeting the 4.9 version of the
.NET Framework. In the References section, add references to the following libraries from the
C:\Program Files\ChyronHego\Prime x.x.x\ folder:

ChyronHego.Prime.Plugin
ChyronHego.Prime.Scene
ChyronHego.Prime.Syntax
ChyronHego.Framework.Application
ChyronHego.Enterprise.Infrastructure

The Prime software will attempt to load all libraries located in the C:\Chyron\Prime\Plugins folder
if it exists. For each library that is successfully loaded, a plugin will be instantiated for each
class that implements the IPlugin interface in the ChyronHego.Prime.Plugin namespace.

IPlugin Interface
Add a new class to the project and have it implement the IPlugin interface. See the
SamplePlugin.cs class in the SamplePlugin project for an example of this. The IPlugin interface
defines 3 members that must be implemented:

string Name { get; }



IEnumerable<PluginObjectDefinition> ObjectDefinitions { get; }

IPluginSettings Settings { get; }

Name defines the name of the plugin. ObjectDefinitions defines a list of objects that can be
placed within Prime scenes. Settings defines an object that can be used to edit and save
application-wide settings for the plugin. Name must return a valid string. ObjectDefinitions can
return an empty list, and Settings can return null if not needed.

PluginObjectDefinition Struct
The PluginObjectDefinition struct defines the name, object type, editor type and runtime type to
be used with a plugin object:

public string Name { get; set; }

public Type ObjectType { get; set; }

public Type EditorType { get; set; }

public Type RuntimeType { get; set; }

Name must return a valid string and ObjectType must return the type of a valid plugin object.
EditorType and RuntimeType can both return null if not needed.

ObjectType Definition

Prime supports two types of objects that can be saved within scenes: Effects and Resources.
Effects can be added as children of Graphic objects, allowing for behavior that can alter the
parent graphic in some way, while Resource objects can be added to the Resources section of
the scene to perform changes on the scene as a whole. The main purpose of this object type
definition is to define the various properties that should be saved with this object.

PluginEffectBase Abstract Class

To create a type that represents an Effect, add a class to the project that inherits from
PluginEffectBase in the ChyronHego.Prime.Plugin.Objects namespace. For example, the
SamplePlugin project defines a TimeZonePluginEffect class that inherits from PluginEffectBase,
while also defining a custom TimeZoneId string property. This effect was designed to update a
parent Text object to display the time of the time zone specified in the effect.

2



PluginObjectBase Abstract Class

To create a type that represents a Resource, add a class to the project that inherits from
PluginObjectBase in the ChyronHego.Prime.Plugin.Objects namespace. For example, the
SamplePlugin project defines an OffsetPluginObject class that inherits from PluginObjectBase,
while also defining a custom MinutesOffset integer property. This object was designed to store
a minutes offset value that all TimeZonePluginEffect objects can look for, and if found, offset the
time zone by the specified number of minutes.

For each defined PluginObjectDefinition, set the ObjectType property to the type of the created
effect or resource class.

EditorType Definition

Each plugin object can define an optional editor type that will be displayed in the Properties
section of the Prime Designer when the object is selected, and allows editing the values of the
properties defined with the object. To create a plugin object editor, add a new User Control
(Windows Forms) to the project. After the user control has been added, change the base type
of the class file from UserControl to PluginEditorBase defined in the
ChyronHego.Prime.Plugin.Editor namespace. Note: this base class already inherits from
UserControl. Before this editor is shown for the defined plugin object, the PluginObject property
will be set with the instance of the selected plugin object. This property can be overridden to set
up any necessary data binding for the designed property editors.

For example, the SamplePlugin project contains a TimeZonePluginEditor user control that
inherits from PluginEditorBase, and displays a combo box that is populated with all known
system time zones, and contains code to bind the TimeZoneId property of the
TimeZonePluginEffect class to this combo box.

For each defined PluginObjectDefinition, set the EditorType property to the type of the created
user control that corresponds with the object type.

RuntimeType Definition

Each plugin object can define an optional runtime class that will be instantiated when a scene is
loaded on a playout channel. To create a runtime class, add a new Class to the project, and set
the class to inherit from PluginRuntimeBase defined in the ChyronHego.Prime.Plugin.Runtime.
This class provides a PluginObject property that can be overridden to access the plugin object

3



that should be operated on. It also defines Load, Play, Stop and Clear methods that can be
overridden to provide custom runtime behavior for the plugin object.

For example, the SamplePlugin project contains a TimeZonePluginRuntime class that provides
behavior to update the parent text object of the associated TimeZonePluginEffect with the
current time for the time zone of the effect's property.

IPluginSettings Interface
To define application-wide settings for the plugin, a class type can be specified for the Settings
property of the main plugin class. This class must implement the IPluginSettings interface in the
ChyronHego.Prime.Plugin.Settings namespace with the following properties:

string Name { get; }

Image Image { get; }

Type EditorType { get; }

Name and Image defines the name and image to be displayed in the application settings item
list on the left hand side. EditorType defines the type of user control to be created to edit the
settings.

4


