PRIME API and Scripting
User Guide

Version 4.10.10

September 2025 C DAY

ONE.

Chyron PRIME API & Scripting User Guide * 4.10.10 « September 2025 - This document is
distributed by Chyron in online (electronic) form only, and is not available for purchase in
printed form.

This document is protected under copyright law. An authorized licensee of Chyron PRIME API &
Scripting may reproduce this publication for the licensee’s own use in learning how to use the
software. This document may not be reproduced or distributed, in whole or in part, for
commercial purposes, such as selling copies of this document or providing support or
educational services to others.

Product specifications are subject to change without notice and this document does not
represent a commitment or guarantee on the part of Chyron and associated parties. This
product is subject to the terms and conditions of Chyron’s software license agreement. The
product may only be used in accordance with the license agreement.

Any third-party software mentioned, described or referenced in this guide is the property of its
respective owner. Instructions and descriptions of third-party software are for informational
purposes only, as related to Chyron products and does not imply ownership, authority or
guarantee of any kind by Chyron and associated parties.

This document is supplied as a guide for Chyron PRIME API & Scripting. Reasonable care has
been taken in preparing the information it contains. However, this document may contain
omissions, technical inaccuracies, or typographical errors. Chyron and associated companies
do not accept responsibility of any kind for customers’ losses due to the use of this document.
Product specifications are subject to change without notice.

Copyright © 2025 Chyron, ChyronHego Corp. and its licensors. All rights reserved.

2 | PRIME 4.10.10 API and Scripting User Guide
pine Chyron.

Table of Contents

L0 3 o Y 14
1] (oo 11 T3 1T o TSP 14
ODbjJeCt HIErarChy.....cooooviiiiiiic 15

SceneControl Object HIErarChy............oo i 15
Scene ODJECt HIBrarCNYoooiiiiiiiii e 16
Canvas ODbjJeCt HIEIarChy.........cocuuiiiiiiie et e e e e e e 17
ControlPanel Object HIErarchy..............uuuiuiiiiiiiiiiiiiieieeeeeeeeeeeeeeeee et a e 17
SCHPNG ODJECES. ...ttt e e e e e s e e e e e e e aeeeeeeeeeaan 19
T~ T 19
(0] 1= 1= S 19
=T o 20
PlayoutStateChanged............ocuiiiiiiiiii e 21
ACHONPIAYEA. ...t 21
METNOAS. ... e 22
10T (@] o7 [=Tox PP 23
[0 | = ¢ o] P PPTPPPPP 23
LOGEXCEPIION. ...ttt e e 24

ST 7=T 1T o =Y o SRS 24
L (0] 1= 1= 25
Y=Y o £ PPN 25
PropertyChanged...........ooiiiiiiii e 25
BeforePropertyChanged...........coooiiiiiiiie et 25
AfterPropertyChanged............ccoo e 26
=1 Lo Yo L SR 26
EXISTS . et 27
LCT= Y= 11 = TSR 27
SEIVAIUE. ... e a e e e 28

19377 F=Ta 1 (o1 @ o) =T od S PP 28
0T 01T 1= T P 29
Y=o TS 29
Property ANIMated.........oouiiieiiii e 30
=1 Lo Yo L SR 30
FINAANIMALION. ..o 31
GEEANIMALION. e e e e e et e e e e e e e e ennreeeeeeeeeeanns 31
IAnimation GetAnimation(string Name).........cccccccovviii 31

7 o3 1T o S 32

3| PRIME 4.10.10 API and Scripting User Guide
P Chyron

Y=Y o] £ J RO UUUPPPRIRPOR 32
Y= o To [TR PSPPI 32
= PP 33

SO it ———— 33
REVEISE. ... ettt et e e e e e e e e e e et eeeaaeeeeans 34
SCENEACHONLIST.... .o e a e e e e e 35
0] 1= 1= 36
METNOAS. ... e 36
1070]0] r= 1 LT PSP O PR 36

T o USSP RERRR 37

1Y o113 =] o T 37
L (0] o= 1= 37
METNOAS. ...ttt et e e et e e e e e e e e e ee bt e e eaeaaeenes 39
T o USSP RERRR 40
GEtFIrStKEYTTAME. ... uiiiiiiiiieeeeeeeeeeeeeeeeeeee et 40
GetlastKeyframe.cooo i a e 41
ANIMAtIONLIST... ..o e e eeaaaas 42
0T 01T 1= P 42
METNOAS. ... 43
T o PSSP EERPR 43

7= SRR PSP PPPRPRR 44

| =T =T 1= (= PR RRUPPPRt 44
e (0] 1= 1= 44
IPAramEterLiSt.. ittt e aaaaaaaaaas 44
Y=Y o] £ J RO UUUPPPRIRPOR 44
Y= 1 o To [TSRO URRPPPN 46
IParameter Find(String NAME)........cooooviiiiiiiiiiiii 46
IParameter Set(string name, object value).....................co 46
IParameter AAd(0DJect Value)..........coouiiiiiiiiiiii e 46

void Remove(IParameter parameter)............ovevviiiiiiiiiiieeeeeeee e 47

S To7=T 0 T=T @7] | 1o PSSR 47
L (0] o= 1= 48
Y=Y o] £ J RSO O PR UUUPPPRIRPOR 49
BEfOr€LOaq..... ..o 49

N (=3 1 Y- To SR 49
AREBIPIAY ..o 50

4 | PRIME 4.10.10 API and Scripting User Guide
P Chyron

[Ty 0TI] (o] o PP 51

N (T] (o o TR 52
METNOAS. ... e 53
INVOKE. ..o 54
FrameRate. s 54
0T 01T 1= S 55
(=TT 0] 11 4o o T 55
0] 1= 1= 56

LAT o4 4 (017 2 o To o 1= P PPPPPPRPP 56
Workflow Configuration Settings.........cooouiiiiiiiiii e 57
WOTKFIOW MONITONoiiiiiiiiiiieee e, 59
Control Panel ODbjJECES.ccoiiiii eeeees 59
U)o o PP 60
0T 01T 1= P 60
Y=o 60
BeforePropertyChanged............oooo 60
PropertyChanged..........oooviiiiiiiiie 60
ARterPropertyChanged...........ooiiiiiiii s 60

O o7 PP P PRERRR 61

=1 o 61
0T 01T 1= P 61
L= o SRR RRTR 62
0T 01T 1= P 62
=T o 62
BeforePropertyChanged.............ooo i 62
PropertyChanged...........ooiiiiiiiiii e 62
AfterPropertyChanged...........ooiiiiiiiii s 62
(O] 1 4] 0o =0) PSR 63
L (0] o= 1= 64
EVEINTS .t e aaaaaaaaaaaaans 64
BeforePropertyChanged...........ooooiiiiiiiiiii e 64
PropertyChanged...........ooooiiiiiiiii e, 64
AfterPropertyChanged............ccoo e 64
SelectedINdeXChanged.........ccooi i 64
CRECKBOX.....cciieee e nnnnanees 66
e (0] 1= 1= 66
EVEINTS. ..ttt e et eas 66

5| PRIME 4.10.10 API and Scripting User Guide
Chyron

BeforePropertyChanged.............ooo i 66

PropertyChanged...........ooiiiiiiiiie et 66
AfterPropertyChanged...........oooiiiiiiiii s 66
CheckedChanged..........oooiiiiiiiii 66

(= Lo [T0] =101 x o] o 67
0T 01T 1= S 68
Y=o 68
BeforePropertyChanged............ooo 68
PropertyChanged.........ooooviiiiiiiii 68
ARterPropertyChanged...........ooiiiiiiii s 68
CheckedChanged..........cooiiiiiiiiiie e 68
NUMEMCUPDOWN. ...t e e e e e e e et e r e e e e e e e e e e ta e e e e e e eeeeeennnnanns 69
L (0] o= 1= 70
EVEINTS .t e aaaaaaaaaaaaans 70
BeforePropertyChanged...........ooooiiiiiiiiiiie e 70
PropertyChanged...........ooooiiiiiiii 70
AfterPropertyChanged............ccoo e 70

LI = o3 (== T PP 71
0T 01T 1= P 72
=T o 72
BeforePropertyChanged.............ooo i 72
PropertyChanged...........ooiiiiiiiiii e 72
AfterPropertyChanged...........ooiiiiiiiii s 72

I AV 1= SRS 73
L (0] o= 1= 74
EVEINTS .t e aaaaaaaaaaaaans 74
BeforePropertyChanged...........ooooiiiiiiiiiii e 74
PropertyChanged...........ooooiiiiiiiii e, 74
AfterPropertyChanged............ccoo e 74
SelectedINdeXChanged.........ccooi i 74
1= T =] PR 75
e (0] 1= 1= 76
EVEINTS. ..ttt e et eas 76
BeforePropertyChanged...........oooiiiiiiiiiie e 76
PropertyChanged...........ooiiiiiiiiieee e 76
AfterPropertyChanged......... ..o ee e eeeeees 76
1Y@ g F= T oo [T o PP 76

6 | PRIME 4.10.10 API and Scripting User Guide
Chyron

0T 01T 1= S 78
Y=o 78
BeforePropertyChanged............oooo 78
PropertyChanged.........ooooviiiiiiiii 78
AfterPropertyChanged...........ooiiiiiiiii s 78
FIleChangEd. ... 78

g 1o 0 1= = o)P RRRP 79
L (0] o= 1= 80

LI L 1 L=1 @7 To [T = 1] Co T PP 80
0T 01T 1= PP 81
=T o 81
BeforePropertyChanged.............ooo i 81
PropertyChanged...........ooiiiiiiiiiie e 81
AfterPropertyChanged...........ooiiiiiiiii s 81
FramesChanged...........ccoooiiiiiiii e e e e e eseeseseeeeeeeeeeeees 81
CaNnVas ObjJECES. b ————————————————————— 82
5 SO 83
0T 01T 1= P 83
=T o 83
BeforePropertyChanged.............ooo i 83
PropertyChanged...........ooiiiiiiiiii e 83
AfterPropertyChanged...........ooiiiiiiiii s 83
PropertyANIMated.o 83
TEXtCRANGE.o —————————raa—a———a——as 84

[4= T = TP EPPP ST 84
0T 01T 1= P 85
=T o 85
BeforePropertyChanged.............ooo s 85
PropertyChanged...........ooiiiiiiiiii e 85
AfterPropertyChanged...........ooiiiiiiiii s 85
PropertyANIMated.o 85
IMAageChanged.........oovviiiiiiii 85

O 1o TP 85
0T 01T 1= P 86
=T o 86
BeforePropertyChanged.............ooo s 86

7 | PRIME 4.10.10 API and Scripting User Guide
Chyron

PropertyChanged.........ooooviiiiiiiii 86

AfterPropertyChanged...........ooiiiiiiiii s 86
PropertyANIMated............uuiiiiiiii e 86
01 =T 86

LT o PR 86
0T 01T 1= S 87
Y=o 87
BeforePropertyChanged............ooo 87
PropertyChanged.........ooooviiiiiiiii 87
ARterPropertyChanged...........ooiiiiiiii s 87
Property ANIMated............ouiiiiiii e 87

MO L. ... e 87
L (0] o= 1= 88
EVEINTS .t e aaaaaaaaaaaaans 88
BeforePropertyChanged...........ooooiiiiiiiiiiie e 88
PropertyChanged...........ooooiiiiiiii 88
AfterPropertyChanged............ccoo e 88
Property ANimMated............uiiiiii e 88
FIleChangEd........coo et 88

=03 €SS 88
L (0] o= 1= 89
EVEINTS .t e aaaaaaaaaaaaans 89
BeforePropertyChanged...........ooooiiiiiiiii e 89
PropertyChanged...........ooooiiiiiiiii e, 89
AfterPropertyChanged............ccoo e 89
Property ANimMated............uiiiiiii e 89

L7 o o J 89
e (0] 1= 1= 90
EVEINTS. ..ttt e et eas 90
BeforePropertyChanged...........ooooiiiiiiiiiiiie e 90
PropertyChanged...........ooiiiiiiiiieee e 90
AfterPropertyChanged......... ..o ee e eeeeees 90
Property ANiMated.........couviieiii e 90

IVI@SK. ...ttt e e et et e e et e et e e et e et e e ae et ettt e et et et a e et et aaaaaaaaaaaaaaaaaaaaaaaaaas 90
0T 01T 1= P 91
=T o 91
BeforePropertyChanged.............ooo s 91

8 | PRIME 4.10.10 API and Scripting User Guide
Chyron

PropertyChanged.........ooooviiiiiiiii 91

AfterPropertyChanged...........ooiiiiiiiii s 91
PropertyANIMated............uuiiiiiiii e 91
= =T = 91
L (0] o= 1= 92
EVEINTS .t e aaaaaaaaaaaaans 92
BeforePropertyChanged...........ooooiiiiiiiii e 92
PropertyChanged...........oooiiiiiiiiii 92
AfterPropertyChanged............ccoo e 92
Property ANimMated............uiiiiii e 92

T | o RS PUPPRPRR 92
e T0] 1= 1= 93
EVBINTS. .ttt ettt e 93
BeforePropertyChanged...........oooiiiiiiiiiii e 93
PropertyChanged...........ooiiiiiiiiiiee e 93
AfterPropertyChanged............cco e e e eeeeees 93
Property ANIMated.........cooureeiii e 93
RENAEI TEXIUIE....coiieeeieeeeeee e 93
0T 01T 1= P 94
=T o 94
BeforePropertyChanged.............ooo i 94
PropertyChanged...........ooiiiiiiiiii e 94
AfterPropertyChanged...........ooiiiiiiiii s 94
PropertyANIMated.o 94

LA = o 94
0T 01T 1= P 95
Y=o T 95
BeforePropertyChanged.............oooo 95
PropertyChanged.........ooooviiiiiiiiie 95
AfterPropertyChanged...........ooiiiiiiii s 95
Property ANIMated............ouiiiiiiiii e 95

= Lo [T Uy o T 95
L (0] o= 1= 96
EVEINTS . .ot e aaaaaaaaaaaaaaaaaas 96
BeforePropertyChanged...........ooooiiiiiiiiiii e 96
PropertyChanged...........ooooiiiiiiiii e, 96
AfterPropertyChanged............ccooo e 96

9 | PRIME 4.10.10 API and Scripting User Guide

Property ANiMated.........coovreeiii e 96

TrANSIHION. .o —————— 96
0T 01T 1= PP 97
=T o 97

BeforePropertyChanged.............ooo i 97
PropertyChanged...........ooiiiiiiiiie et 97
AfterPropertyChanged...........oooiiiiiiiii s 97
PropertyANiMated..... ..o 97

L7 - PP 97
0T 01T 1= P 98
Y=o 98

BeforePropertyChanged............oooo 98
PropertyChanged.........ooooviiiiiiiii 98
ARterPropertyChanged...........ooiiiiiiii s 98
Property ANIMated............uuiiiiiiie e 98

(O 0 F= 1 =T (=Y PSR 99
0T 01T [PP 100
EVENTS. .o e e e 100

BeforePropertyChanged...........coooiiiiiiiiii e 100
PropertyChanged..........oooviiiiiiiiiiie 100
AfterPropertyChanged.............cccoocuiiiiiiiiiie e e 100
Property ANIMated...........ueiiiiiie e 100
7= Lo TSP P PP SOPPPPPRP 100

Canvas ODjJECES.......coo o — 101

GraPNICS. .o ———————— 101
L5 S 102

L 1o T USRS 104

g =T = T 106
=T o2 £ SEERR PP 107
L= Ty o J SRR 108

LI =10 71) o 109
Transition before Update EVents...........ooovii 110
Transition after Update Events...........ooovii 111

L7 - 1. R 112
Start Of LiN€ EVENL... ... et e e e e e e e 113

ENd Of LiN€ EVENT......oeeiiieeee e 114

ENd Of File EVENt.......oeeie e 116

10 | PRIME 4.10.10 API and Scripting User Guide
Chyron

RESOUICES. ...ttt ettt et e e e e e e e e ettt e e e e e e e e e ea s eeaaeas 117

B L0 1= PP RRRRP 118

L= g (o] 1= [118

TIMEr EVENTS ..o, 122

BULON EVENES.....eeee e 126

Lo T0] oo) PSSP 126

KEYTTAME TGO .. ettt eeaeeeaeeaaaaaaaaaaaaaaaaaaaans 127

[0 0T = o =Y 130
SCHPHNG EQION ... e e 131
SCENE SCIIPEING. ..ttt e 131
Scripting Properties. 132
REFEIENCES..... ..ttt e e e e e e e e et e e et e e e e e e e e e aaaaaaaaaaaaaaaaaaaans 133
ASSEMDIIES.o 133

LS e e a e e e aaaeeaan 134

o o) 1= 134

Scripting Properties. ... —————— 135

Y o] 011 T | 137
TEXE FlE REAMEN e et e e e e e e e e r e ns 137
CANVAS.....uuiiiiiiiiiiiii ittt e e e e e e e e e e e e e e e e e e et e e e e e e e e et e e e e e e et e e e e e e e e e e aaaaaaaaaaaaaaaaaaaaaaaaaaas 137
CoNtrol PANEl......coooovieeieeee s 137

o7 o) RSP RRR 137

ST To 1= 05T oSSR SPP 140
CANVAS.....uuiiiiiiiiiiiii ittt e e e e e e e e e e e e e e e e e e et e e e e e e e e et e e e e e e et e e e e e e e e e e aaaaaaaaaaaaaaaaaaaaaaaaaaas 140
CoNtrol PAnEl......cooooiieeieee s 140

o7 o) RSP RRR 141

R T = o T o 146
TRE MOAEL......ccc e ———————— 147
Script Execution and Context.............ooooiiiii 147
SCENE DESIGNEN ...ttt e e e e ettt e e e e e e e et e e e e e e e e ea s 147
ODJECT HIBAICNYcceiieeieee ettt e e e e e e e e e e aanes 152
GlODAI KEYWOIAS.uiiiiiiiiiiiiieieee ettt e e et e e et eeeeens 153
ACHVESCENE. ..ottt e 153

P iMoo e e ———_ 153
Parameters.o e e e e a 153
APT RETEIENCE.......uuiiiiiiiiiiiet ettt ettt et e et ea e 154
10 = 155

11| PRIME 4.10.10 API and Scripting User Guide
Chyron

AUIIS CBNES. ... et 155

(00121 0 ST ot=Y o Lo T 155
Parameters.o e aaaaaans 155
SCENE(IA AS SHNG). i iiiiii i e e e e ee e e e e e e e e e eereeeeeaaaaaas 156
SCeNEEXIStS(Id AS STrNG).....uuueiuiiiiiiiiiiiiiiiiiiiii e e e e e e e e e e e e e eeeeeeeaeaeeaaeaes 156
SCENECOIECHION. ...t e e et 156
(070 18] o | PRSP 156
1T 0 aT(TaTo [d ST 157
CHOSEAILL ...ttt e e e e e e e e et e e et e e e et e e e e e e e e aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaeaaaaeas 157
SHOPAIL e ———————————————— 157
ST ot=T o 1= YO 157
ClOS ..ttt e et e e e e e et e e e e e et e e e e e e et e e et e e e et e e e e e e e e e e e aaaaaaaaaaaaaaaaaaaaaaaaaas 158
(70T a1 i o] (=10 0 =) TP 158
(07010110 [TUUR PRSP O 159
o = Vo PP UURTR 159
Object(name AS StHNG).....coooiiii i 159
O o] 1= o2 T USRS 160
1O 1= o T 160
Parameters.o aaaaaans 160
[= PP PPPRPPPPPI 160
Yo7 a1 [R PSPPSR 160
SCENESTALE. ... e 161
] (o) o TS 161
L0701 o1 i o] F PP 161
I F= T 01T 162
1157 1= 2P PP PPPPPRPPPR 162
210] 1 (o] o PRSP 163
L (=TT = o P 163
CRECKBOX.....cc i —— 163
CRECKEA. ... e e e e e e e e e e e e e eeeaaas 164
(070]0¢] 0 0] = o) U URUPPPRPRPN 164
HEMCOUNT ..., 164
10T 1 164
SelECIEAIEM. ..o 165
GethtemMValUE(ITEIM)...... e 165
1= o (=T 165
=10 PP 166

12 | PRIME 4.10.10 API and Scripting User Guide
Ping Chyron

SEIECIEA. ... e 167
RICATEXIEAIION. et e e e e e e e e e e bt e e eaaaaeeees 167
XL ————————————————————————————— 168
NUMEIC UP/DOWN.....ooiiiiiiiieiieeeeee e, 168
VaIUB. ... ettt et e e e et e e e e e e et 169
LY = 10 PSP 169
XL ————————————————————————————— 170
TIMECOAEEILON. e e e e e e e e e e e e e e e e e e aaaaaaaaaaaaaaaaeas 170
(D101 =1 i o] o [T PP R UURPPPTN 171
=10 1= S USRS 171
ODJECH. i ——— 171
I F= T 01 TP 172

A CHION. et e e e e e e e ar————— 172
N E=T 0 0 L= TP UURPPPN 173
11 T = 173
ParamMELEIS.eiiiiiiiieee e 173
tem(N@meE AS SHHNG)...cooi i 174
1Y 00 TSP PSTRR 174
ContainsS(NameE AS STFING)....cuuuiiiiiiiiieieeeeeeeeeeeeee e 175
Remove(Name AS STrNG)........uuuiuuiuuiiiiiiiiiiiiiiieiieereeeeeeeeereeereeeereererrerreeereereereeeeeeeeeeees 175
PRIME C# API INTEracCtioN..........uuuuiiiiiiieeeeeee ettt 175

13 | PRIME 4.10.10 API and Scripting User Guide
P Chyron

PRIME versions 4.0 and later introduced support for C# scripting, which includes the ability to
interact with and control the state of scenes, their actions and control panel controls through C#
scripts. This document will be describing the PRIME version and scripting interface.

There is only one PRIME application running on a system at a time. The application services
request through the API, providing the ability to retrieve and modify the state of scenes in the
local PRIME database.

The Scene is the basic PRIME structure, containing multiple graphical, hardware and control
elements called SceneObjects that define an interface to configurable aspects of the scene.
Scenes also contain one or more Actions, which define object animations, and may be
triggered through the scripting API. Each scene also has a collection of customizable User
Parameters, which allows scripts to store and retrieve context information at runtime.

PRIME uses the Microsoft C# compiler to provide support for C# scripting. Scripts associated
with a scene at design time are executed in-process. In-process scripts are provided context
and a handle on the PRIME API in the form of global keywords that are accessible from the
script. Other classes needed for more complex scripting are available through both
Microsoft. NET assemblies as well as PRIME assemblies.

As of PRIME 4.5, the underlying architecture of PRIME was upgraded from .NET Framework to
.NETG6. Microsoft has changed the API in some cases and deprecated some functionalities.
Therefore any customer upgrading to PRIME 4.5 or higher using C# scripting will need to retest
their C# script and may need to make changes to their code if it directly makes calls to .NET
library methods in order to make it compatible with .NET 6.

14| PRIME 4.10.10 API and Scripting User Guide
Chyron

Object Hierarchy

SceneControl Object Hierarchy

+

1SceneObject

Canvas Objects

7
B

)
s

=

<o | Sem Caswas Hisrarchy

I
|

15| PRIME 4.10.10 API and Scripting User Guide Chyron

Scene Object Hierarchy

Control Panel Controls

Resources

T [
N - [

=

16 | PRIME 4.10.70 API and Scripting User Guide

Chyron.

Canvas Object Hierarchy

Canvas

mma ResolutionObject

FrameRate

- T

mma SceneObjectlist

IScene0bject

- | See Scene Hierarchy
IScene

EventList

|—P TriggerList
L [Trigger

TriggerList

|—> ITrigger

17 | PRIME 4.10.10 API and Scripting User Guide
pine Chyron.

ControlPanel Object Hierarchy

ControlPanel

ControlObjectList

IComponentObject

E TriggerList

= Component
—> EventList
|—> TriggerList
|—> [Trigger
— IScene
*| See Scene Hierarchy
ITrigger

18 | PRIME 4.10.10 API and Scripting User Guide

Chyron.

IScene

The scene object is available through the main script object, which is a SceneControl. Each
scene contains a collection of graphical, hardware and control elements called ISceneObjects,
such as crawls, images and controls, which are exposed to scripting using the AllObjects
enumeration properties, as shown below.

Namespace: Chyron.PowerBox.Scene.Objects

Name Type Description

Name string Gets the scene name.

Resolution Resolution Gets or sets the resolution of the scene (see
Resolution section).

FrameRate FrameRate Gets or sets the frame rate of the scene (see
FrameRate section)

Description string Gets the scene description.

Closed bool Gets a flag indicating if the scene is closed.

Playing bool Gets a flag indicating if the scene is playing.

Stopped bool Gets a flag indicating of the scene is stopped.

PlayoutState

PlayoutState

The PlayoutState is an enumerated value that
indicates the current state of the scene. Below is a
list of valid values and what they mean.

Closed Scene in not in preview of on air.
Loaded Scene is in preview

Playing Scene is on air.

Stopping Scene is being stopped (being
transferred from on air to preview)

Stopped Scene in in preview.
Status string Gets a descriptive status of the scene.
FilePath string Gets the file with full path of the scene.
Directory string Gets the directory of the scene.
ProjectDirectory | string Gets the directory of the project the scene is

contained in.

AllObjects [Enumerable<ISceneObject> | Get the list of all objects including graphics, control
panel, resources and effects that the scene
contains.

Actions SceneActionList Gets the list of Actions defined for this scene.

Canvas Canvas Gets the canvas object used for the display of
graphics and effects.

Scripting Scripting Gets the scripting object for this scene.

19 | PRIME 4.10.10 API and Scripting User Guide

Chyron

ControlPanel ControlPanel Gets the control panel object used in the display of
the control panel objects.

Resources SceneResources Gets the list of resources defined for this scene
such as DataObjects,

Parameters ParameterList Gets the list of parameters defined for the scene.

Expressions ExpressionList Gets the list of expressions defined for the scene.

20 | PRIME 4.10.10 API and Scripting User Guide

Chyron.

The event is triggered when the state of the scene changes.
Example:

public ScriptTest()

{
InitializeComponent();
// Hookup your handler to the scenes event
this.Scene.PlayoutStateChanged += OnPlayoutStateChanged;
}

// Handles the PlayoutStateChnaged event from the scene

private void OnPlayoutStatedChanged(IScene scene)

{
switch (scene.PlayoutState)

{

case PlayoutState.LlLoaded:
// You code to handle the Loaded state
break;

case PlayoutState.Playing:
// Your code to handle the Playing state
break;

case PlayoutState.Closed:
// Your code to handle the Closed state
break;

case PlayoutState.Stopped:
// Your code to handle the Stopped state.
break;

21 | PRIME 4.10.10 API and Scripting User Guide

Chyron.

The event is triggered when one of the scenes actions is played.
Example:

public ScriptTest()

{
InitializeComponent();
// Hookup your handler to the scenes event
this.Scene.ActionPlayed += OnActionPlayed;
}

// Handles the ActionPlayed event from the scene
private void OnActionPlayed(IAction action)

{
}

// Your code to handle the ActionPlayed event

22 | PRIME 4.10.10 API and Scripting User Guide

Chyron.

Find the specified object by name from the list of objects the scene contains. This includes
graphical, control panel, resource and effect objects. If the object for the name specified was
not found, then null is returned so a check of the return value is necessary.

Syntax:
ISceneObject FindObject(string name)

Example:

// Attempt to find object “MyCrawl” in scene
var effect = Scene.FindObject("MyCrawl");
if (effect != null)

{
// Add you code here
}
else
{
Scene.LogError("MyCrawl not found")
}

Logs the specific string to the log file.

Syntax:
void LogError(string error)

Example:

This example tries to find and scene object called “MyObiject” in the list. If the object is not found
the value returned is null and is checked so that a message can be logged.

// Attempt to find object “MyObject” in scene
var obj = Scene.FindObject("MyObject");
if (obj != null)

{
// Add you code here
}
else
{
Scene.LogError("MyObject not found")
}

23 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

Log the specified exception to the log file.

Syntax:
void LogException(Exception exception)

Example:

The LogException() method is used in conjunction with try-catch construct seen below. You
wrap you code in a try catch block in case an exception is thrown so can log it as well as have
the ability to handle it gracefully.

private void MyMethod()

{
try
{
// Add your code here
}
catch (Exception ex)
{
Scene.LogException(ex);
}
}

24 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

ISceneObject

The ISceneObject is the interface of all Control Panel, Canvas and Resource and Effect objects
in a scene. The ISceneObject allows a script author the ability to affect the state of any objects
that the scene contains. To access the ISceneObjects from a Scene you would use either
AllObjects property or the FindObject() method.

Namespace: Chyron.Framework.Scene.Objects

Name Type Description

Name string Gets the name of the scene object.

ScriptName string Gets the script name for the scene object.

Scene IScene Gets the scene the scene object is associated with.
Events EventList Gets the list of events associated with the scene object.
Parent ISceneObjectParent | Gets the parent of the scene object.

Event is triggered when one of the scene objects properties has changed.
Syntax:

void PropertyChanged(string property)

Event is triggered prior to a property being changed allowing for the scene author to perform
some processing prior to a particular property on a scene object is performed. Notice that the
first parameter in the syntax identifies the ISceneObject that is triggering this event. This allows
the scene author to use the same event handler to handle multiple BeforePropertyChanged
events from different ISceneObject’s.

Syntax:

void BeforePropertyChanged(ISceneObject sceneObject, string property, object
value)

25| PRIME 4.10.710 API and Scripting User Guide
Ping Chyron

Event is triggered after the property has been changed allowing for the scene author to perform
some processing after a particular property on a scene object is performed. Notice that the first
parameter in the syntax identifies the ISceneObject that is triggering this event. This allows the
scene author to use the same event handler to handle multiple AfterPropertyChanged events
from different ISceneObjects.

Syntax:

void AfterPropertyChanged(ISceneObject sceneObject, string property, object
value)

Example:

Register event handlers for the PropertyChanged, BeforePropertyChanged and
AfterPropertyChanged event so that the scene author can perform processing when these
events are triggered.

public ScriptTest()

{
InitializeComponent();
var textbox = this.Scene.FindObject("MyTextBox");
if (textbox != null)
{
textbox.PropertyChanged += OnPropertyChanged;
textbox.BeforePropertyChanged += OnBeforePropertyChanged;
textbox.AfterPropertyChanged += OnAfterPropertyChanged;
}
}

26 | PRIME 4.10.10 API and Scripting User Guide
Chyron

Returns true of the property specified by type exists in the property list.
Syntax:
bool Exists(string property)

Example:

// Get the SAMPLE scene from the ChannelBox database
var scene = ChannelBox.GetScene("SAMPLE");

// Gets the object MyTextBox from the SAMPLE scene
var obj = scene.FindSceneObject("MyTextBox");

// Check if the MyTextBox has a Text property that has been set. If true
// then access the value otherwise ignore since we don’t want use

// the default value.

if (obj.Exists("Text"))

{
// Get the Text property value
var value = obj.GetValue("Text");

// Do something with the value

Returns the value of the property specified if it exists otherwise a null is returned.
Syntax:

object GetValue(string property)

Example:

Get the “MyTextBox” scene object and make sure that it was found by checking against the null
value. If the scene object was found, then try to get the value for “PropertyName”. Check the
value return against null to make sure the property was found.

var textbox = this.Scene.FindObject("MyTextBox");
if (textbox != null)

{

var value = textbox.GetValue("PropertyName");

if (value != null)
{

}

// Your code to use the value for PropertyName

27 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

Sets the property value for the type specified.

Syntax:

void SetValue(string property, object value)
Example:

Get the “MyTextBox” scene object and make sure that it was found by checking against the null
value. If the scene object was found, then set the Text property of the scene object to “Test.

var textbox = this.Scene.FindObject("MyTextBox");
if (textbox != null)

{
textbox.SetValue("Text", “Test”);

28 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

IDynamicObject

<<Interface>>
<<Interface>>

I1SceneObject

IDynamicObject

Mame
Animations ScriptName

etammaton scene

FindAnimation = Events
Parent

ProperyChanged

Before PropertyChanged
AfterPrope riyChanged

bool Exists{string property)
ohject GetValue(string property)

void SetValuelstring property, object value)

The IDynamicObject is the base interface for graphics and effects scene objects. It extends the
functionality of the ISceneObject described earlier.

Namespace: Chyron.Framework.Scene.Objects

Properties

Animations AnimationList | Gets the list of animations for this scene object.

29 | PRIME 4.10.10 API and Scripting User Guide
pine Chyron.

Event is triggered when one of the scene properties is animated.

Syntax:

void PropertyAnimated(IDynamicObject parent, string property)
Example:

Register the OnPropertyAnimated event handler to a graphics Text objects (Text1)
PropertyAnimated event. This example handles the property-animated event for the
“MyGraphicText” object and x position property.

public ScriptTest()
{

InitializeComponent();

Textl.PropertyAnimated += OnPropertyAnimated;

}

// Event handler for the PropertyAnimated event of the scene object
private void OnPropertyAnimated(IDynamicObject dynamicObject, string
property,

object value)

{
if (dynamicObject.Name == "MyGraphicText" && property == "Positionx")
{
// Your code for handling the property animated event
}
}

30 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

Attempts to find the animation using the name specified and return it. If the animation was not
found then a null is returned.

Syntax:

IAnimation FindAnimation(string name)

Example:

Attempt to get the animation using the name specified “MyAction” and if found then the
animation object is returned. We must check for null before to make sure that a valid object was
returned.

private void FindAnimationExample()

{
var animation = Textl.FindAnimation("MyAction");
if (animation != null)
{ // Your code to manipulate the animation
}
}

Attempts to find the animation using the name specified and return it. If the animation was not
found, then a new animation with the name specified is returned.

Syntax:
IAnimation GetAnimation(string name)
Example:

Attempt to get the animation using the name specified “MyAction”, if the animation is not found
then a new animation is created and returned.

private void GetAnimationExample()

{

var animation = Textl.GetAnimation("MyAction");
// Your code to manipulate the animation

31| PRIME 4.10.10 API and Scripting User Guide

Chyron

IAction

The object describes an action used within a scene. It is the element used within the
SceneActionList described below.

Namespace: Chyron.Powerbox.Scene.Actions

Name Type Description

Name string Gets the name of the Action

ScriptName | string Gets the name of the script associated with this Action
Length TimeCode Gets or sets the length in time for this Action
Animations | I[Enumerable<IAnimation> | Gets the list of animations associated with this Action
Playing bool Gets the flag indicating if the Action is playing or not.
Name Description

Played Event triggered when the action is played

Finished Event triggered when the action has finished playing.

32 | PRIME 4.10.10 API and Scripting User Guide
P Chyron

Plays the action.
Syntax:

void Play()
Example:

Handles a SelectedindexChanged event for a ComboBox (see Control Panel section) that will

take the current selected action name from the MyActionComboBox and use that to lookup the
action in the current scenes action list. If the action was found and is not playing, then play the
action.

private void OnSlectedIndexChanged(object sender, EventArgs args)
{
var name = MyActionComboBox.SelectedItem as string;

var action = this.Scene.Actions.Find(name);

if (action !=- null && 'action.Playing)
{

}

action.Play();

33 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

Stops the action if being played.
Syntax:

void Stop()

Example:

Handles a SelectedIindexChanged event for a ComboBox (see Control Panel section) that will
take the current selected action name from the MyActionComboBox and use that to lookup the
action in the current scenes action list. If the action was found and is playing, then stop the
action.

private void OnSlectedIndexChanged(object sender, EventArgs args)
{
var name = MyActionComboBox.SelectedItem as string;

var action = this.Scene.Actions.Find(name);

if (action !=- null && action.Playing)
{

}

action.Stop();

34 | PRIME 4.10.10 API and Scripting User Guide

Chyron

Reverses the action.
Syntax:

void Reverse()
Example:

Handles a SelectedIindexChanged event for a ComboBox (see Control Panel section) that will
take the current selected action name from the MyActionComboBox and use that to lookup the
action in the current scenes action list. If the action was found, and is not playing, then reverse
the action.

private void OnSlectedIndexChanged(object sender, EventArgs args)
{
var name = MyActionComboBox.SelectedItem as string;

var action = this.Scene.Actions.Find(name);

if (action !=- null && 'action.Playing)
{

}

action.Reverse();

35| PRIME 4.10.10 API and Scripting User Guide
P Chyron.

SceneActionList

Contains a list of IAction elements for a scene that allows for the access, manipulation and
monitoring of these elements.

Namespace: Chyron.PowerBox.Scene.Actions

Name Type | Description

Count int The number of IAction elements in the list.

Returns true if an action with the name specified exists in the list, false if it does not.
Syntax:

bool Contains(string name)

Example:

Check if the current scenes action list contains the action “MyAction” in the list prior to using the
Find() method and manipulating the action.

private void ContainsActionExample()

{
if (this.Scene.Actions.Contains("MyAction") == true)
{ var action = this.Scene.Actions.Find("MyAction");
// Your code to manipulate the action
}
}

36 | PRIME 4.10.10 API and Scripting User Guide
P Chyron

Returns the IAction element that matches the name specified if found or null is not found. A
check of the return value against null is required.

Syntax:
IAction Find(string name)
Example:

Attempt to find “MyAction” action in the current scenes action list. Check to make sure that the
action was found by checking the return value against null.

private void FindActionExample()

{
var action = this.Scene.Actions.Find("MyAction");
if (action != null)
{ // Your code to manipulate the action
}
}
IAnimation

This object describes an action used within a scene. It is the element used within the
SceneActionList described below.

Namespace: Chyron.PowerBox.Scene.Objects

37 | PRIME 4.10.10 API and Scripting User Guide
P Chyron

Name

Type

Description

Name

string

Gets the name of the Animation

ScriptName

string

Gets the script name for this animation.

Loop

bool

Gets the flag indicating whether the animation is to loop
or not.

HasKeyFrames

bool

Gets the flag indicating whether the animation contains
keyframes.

IsDefault

bool

Gets the flag indicating whether this animation is the
default.

ParentObject

IDynamicObject

Gets the parent object that owns this animation.

Length

TimeCode

Gets the length in time for this animation.

Keyframes

KeyframelList

Gets the list of keyframes associated with this animation.

[string name]

IKeyframe

Indexer allowing the scene author access to the
keyframes associated with this animation as if accessing
an array of elements using the name. When using the
indexer to access animations keyframes it works just like
the Find() method described below in which case a null is
returned if the name specified is not found.

Example:

private void
FindAnimationKeyframeExampleUsingIndexer()

{

var animation =
Textl.Animations.Find("MyAnimation");

if (animation != null)

{

var keyframe =
animation["MyStartingKeyFrame"];

if (keyframe != null)
{
// Your code to manipulate the
// animations keyframe
}
}

[int index]

IKeyframe

Indexer allowing the scene author iterate over all the
animations keyframes by using an indexer.

38 | PRIME 4.10.10 API and Scripting User Guide

Chyron

{

{

Example:
private void
FindAnimationKeyframeExampleUsingIndexer()
var animation
Textl.Animations.Find("MyAnimation");
if (animation != null)
for (var i = 0;

i < animation.Keyframes.Count;

var keyframe = animation[i];

// Your code to manipulate the
// animations keyframe

39 | PRIME 4.10.10 API and Scripting User Guide

Chyron.

There are two methods available which enables the author to find a keyframe in the animation.
One uses the name and the other the frame index. If any of these methods cannot find the
keyframe based on the parameter then a null is retuned.

Syntax:

IKeyframe Find(string name)
IKeyframe Find(int frame)
Example:

Attempts to find the “MyKeyframe” keyframe in the “MyAnimation” animation. Notice that each
find checks the returned value against null to make sure a valid object is returned.

private void FindKeyframeExample ()

{
var animation = Textl.Animations.Find("MyAnimation");
if (animation != null)
{ var keyframe = animation.Find("MyKeyframe");
if (keyframe != null)
{ // You code to manipulate the keyframe
}
}
}

40 | PRIME 4.10.10 API and Scripting User Guide

Chyron

Syntax:

IKeyframe GetFirstKeyframe();
Example:

Gets the first keyframe from “MyAnimation” animation. Notice that the keyframe returned from
GetFirstKeyframe() is checked against null in case not keyframes are present.

private void GetFirstKeyframeExample ()

{
var animation = Textl.Animations.Find("MyAnimation");
if (animation != null)
{
var keyframe = animation.GetFirstKeyframe();
if (keyframe != null)
{
// You code to manipulate the keyframe
}
}
}
Syntax:

IKeyframe GetLastKeyframe()

Example:

Gets the last keyframe from “MyAnimation” animation. Notice that the keyframe returned from
GetlLastKeyframe() is checked against null in case not keyframes are present.

private void GetLastKeyframeExample ()

{
var animation = Textl.Animations.Find("MyAnimation");
if (animation != null)
{
var keyframe = animation.GetLastKeyframe();
if (keyframe != null)
{
// You code to manipulate the keyframe
}
}
}

41 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

AnimationList

Contains a list of IAnimation elements for a scene that allows for the access, manipulation and
monitoring of these elements.

Namespace: Chyron.PowerBox.Scene.Objects
Name Type Description
Count int The number of IAnimation elements in the list.

AllKeyfarmes

IEnumerable<IKeyframe>

Returns a list of all keyframes from all the animations.

[string name]

[Animation

Indexer allowing the scene author access to the
animations as if accessing an array of elements using
the name. When using the indexer to access
animations it works just like the Find() method
described below in which case a null is returned if the
name specified is not found.

Example:
private void
FindAnimationExampleUsingIndexer ()

{
var animation =
Textl.Animations["MyAnimation"];

if (animation!= null)

{

// Your code to manipulate
the
// animation

42 | PRIME 4.10.10 API and Scripting User Guide

Chyron.

Attempts to find the animation using the name specified. If the animation is found, then the
object is returned otherwise a null is returned if the animation is not found.

Syntax:
IAnimation Find(string name)

Example:

Attempt to find “MyAnimation” animation in the graphics text object Text1. Check to make sure
that the animation was found by checking the return value against null.

private void FindAnimationExample()

{
var animation = Textl.Animations.Find("MyAnimation");
if (animation!= null)
{
// Your code to manipulate the animation
}
}

43 | PRIME 4.10.10 API and Scripting User Guide

Chyron.

Attempts to find the animation using the name specified and it is does not then it will add a new
animation with the name specified.

Note — Care should be taken if this method is used, since new animations will be added if the
name specified is not found. The Find() method is the suggested method to use.

Syntax:
IAnimation Get(string name)
Example:

Attempt to find “MyAnimation” animation in the graphics text object Text1 if it is not found then a
new animation is added with the name specified. Notice that no check is required for the
animation returned as it is either found or created so a valid object will always be returned.

private void GetAnimationExample()

{
var animation = Textl.Animations.Get("MyAnimation");
// Your code to manipulate the animation

}

IParameter

The IParameter is interface used to define all parameter type objects with the PRIME system. It
is used as the object type for the IParameterList described below, and is used to access,
modify and manipulate parameter values within the scene.

Namespace - Chyron.Enterprise.Infrastructure.Parameters

Type Name Description

string Name Gets the name of the
Parameter

object | Value Gets or sets the value of
the parameter

IParameterList

The IParameterList is the interface for all lists utilizing the IParameter interface described
above. It allows for the access, modification and manipulation of these elements using the
methods defined below.

Namespace: Chyron.Enterprise.Infrastructure.Parameters

44 | PRIME 4.10.10 API and Scripting User Guide
Chyron

Name Description

ParameterChanged | This event is triggered when an IParameter element in the list has changed.
This event can be used to detect when a particular parameter of interest value
has been modified so that some process can take place.

Example:

The handler must first be attached to the event such as in the constructor method, which is the
same name as the scene, which is seen below, and is called when the main scripting object is
created. The using line must be added to the list at the beginning of the script so that the
IParameter properties and methods can be accessed in the handler.

// Required for IParameter type in handler

using Chyron.Enterprise.Infrastructure.Parameters;
// constructor

public ScriptTest()

{
InitializeComponent();
// Attach handler to event
this.Parameters.ParameterChanged += OnParameterChanged;
}

// Handles the ParameterChanged event
private void OnParameterChanged(IParameter parameter, object previousValue)

{

if (parameter.Name == "MyParameter")
{
try
{
// Add your code here
}
catch (Exception ex)
{
// Add you code to handle exception
Log("Failed to handle ParameterChanged event");
}

45| PRIME 4.10.10 API and Scripting User Guide
P Chyron.

Attempts to find the IParameter element with the name specified in the list. If found, then the
parameter is return otherwise a null value is returned. The return value should be checked for
null to determine if the parameter was found and proper handling should be implemented.

Example:

Find a IParameter element by name to get the value. Verify that the parameter actually was
found by checking the if the return value is null. If the parameter was not found log some error
message and use a default value otherwise use the parameters value.

var parameterValue = "DefaultParameterValue";
var parameter = this.Parameters.Find("MyParameter");
if (parameter == null)
{
Log("MyParameter was not found");
}
else
{
parameterValue = Convert.ToString(parameter.Value);
}

Sets or adds the value of the IParameter element whose name is specified in the method. If the
IParameter element specified by the name already exists, then the value is set but if it not then
a new IParameter element is added with name and values specified. Notice that the value of
the parameter is a generic object which is to allow a parameter to be any one of the following
types (Boolean, ByteArray, DateTime, Double, Int, Long, String and TimeSpan).

Example:

var parameterValue = "NewValue";
var parameter = this.Parameters.Set("MyParameter", parameterValue);

46 | PRIME 4.10.10 API and Scripting User Guide
Chyron

Adds a new IParameter element to the list with the value specified. The name of the parameter
will be “Parameter N” where N is an incremental number for the parameter. Notice that the
value of the parameter is a generic object which is because a parameter can be any one of the
following types (Boolean, ByteArray, DateTime, Double, Int, Long, String and TimeSpan). The
parameter added will only be temporary and is only available during the playout.

Example:

var newParameter = this.Parameters.Add("This is a test");

Removes a IParameter element from the list such as a temporary one that was added with the
Add() method described above.

Example:
this.Parameters.Remove(newParameter);
Warning:

Removing parameters that were not added through the Add() or Set() method is not
recommended as it may cause adverse and/or unexpected affects during the playout.

47 | PRIME 4.10.10 API and Scripting User Guide

Chyron.

SceneControl

SceneControl is the top-level object available to scene script. This object allows the script
author the ability to affect the state of the current scene and its objects, store and retrieve
context information for use by other scripts, and a plethora of other features.

Namespace: Chyron.PowerBox.Playout.Userinterface

Name Type Description

Scene IScene This returns the current scene that is being acted upon. Access to
all scene properties are done through this property (see Scene
section)

Parameters IParameterlList | This property allows the script author to access and modify any of
the parameters defined in the scene (see IParameterList section)

InvokeRequired | bool If this property is true then Invoke() method needs to be used
update any controls on the Control Panel. If false then Invoke() is
not required and update to any of the Control Panel controls
directly.

Example:

To enable a MyButton button on the control panel the following code is needed if this is being
done on a separate thread.

// Enable/Disable MyButton on control panel
private void EnableButton(bool enable)

{ if (this.InvokeRequired)

{ Invoke(new Action<bool>(EnableButton), new object [] { enable }
)s

}

else

{

MyButton.Enabled = enable;

}

}

48 | PRIME 4.10.10 API and Scripting User Guide
P Chyron

To utilize events within your script you will need to attach an event handler that will perform
some task before continuing with the process. Take note that tasks within the event handlers
should be kept short so as not to delay the scene. In addition, error handling should be
considered, as any code that generates an exception will cause the scene to stop processing at
that point.

This event is triggered before the scene is loaded into preview.
Syntax:

void BeforeLoad(IScene scene)

Example:

Attach your event handler method OnBeforeLoad to the BeforeLoad event in the constructor
of the scenes script class. Any time the BeforeLoad event is triggered the OnBeforeLoad
method will be called.

// constructor
public ScriptTest()

{
InitializeComponent();
// Attach event handler to event
this.BeforelLoad += OnBeforelLoad;
}

// Handles the BeforelLoad event

private void OnBeforelLoad(IScene scene)

{

// Add your code here, but make sure it is not a long process

}

49 | PRIME 4.10.10 API and Scripting User Guide

Chyron

This event is triggered after the scene is loaded into preview. It will not be triggered if the scene
is taken to air directly. This event is triggered before the scene is loaded into preview.

Syntax:

void AfterLoad(IScene scene)

Example:

Attach your event handler method OnAfterLoad to the AfterLoad event in the constructor of
the scenes script class. Any time the AfterLoad event is triggered the OnAfterLoad method will
be called.

// constructor
public ScriptTest()

{
InitializeComponent();
// Attach event handler to event
this.AfterLaod += OnAfterlLoad;

}

// Handles the AfterLoad event

private void OnAfterLoad(IScene scene)

{

// Add your code here, but make sure it is not a long process

}

50 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

This event is triggered after the scene is taken to air. It will not be triggered if the scene is
directly loaded into the preview channel. This event is triggered before the scene is loaded into
preview.

Example:

Attach your event handler method OnAfterPlay to the AfterPlay event in the constructor of the
scenes script class. Any time the AfterPlay event is triggered the OnAfterPlay method will be
called.

// constructor
public ScriptTest()

{
InitializeComponent();
// Attach event handler to event
this.AfterPlay += OnAfterPlay;

}

// Handles the AfterPlay event

private void OnAfterPlay(IScene scene)

{

// Add your code here, but make sure it is not a long process

}

51 | PRIME 4.10.10 API and Scripting User Guide

Chyron.

This event is triggered before the scene is transferred from air to preview. Clearing the scene
from preview or air does not trigger this event. This event is triggered before the scene is loaded
into preview.

Example:

Attach your event handler method OnBeforeStop to the BeforeStop event in the constructor of
the scenes script class. Any time the BeforeStop event is triggered the OnBeforeStop method
will be called.

// constructor
public ScriptTest()

{
InitializeComponent();
// Attach event handler to event
this.BeforeStop -= OnBeforeStop;
}

// Handles the BeforeStop event

private void OnBeforeStop(IScene scene)

{

// Add your code here, but make sure it is not a long process

}

52 | PRIME 4.10.10 API and Scripting User Guide

Chyron.

This event is triggered after the scene is transferred from air to preview. Clearing the scene from
preview or air does not trigger this event. This event is triggered before the scene is loaded into
preview.

Example:

Attach your event handler method OnAfterStop to the AfterStop event in the constructor of the
scenes script class. Any time the AfterStop event is triggered the OnAfterStop method will be
called.

// constructor
public ScriptTest()

{
InitializeComponent();
// Attach event handler to event
this.AfterStop += OnAfterStop;

}

// Handles the AfterStop event
private void OnAfterStop(IScene scene)

{

// Add your code here, but make sure it is not a long process

}

53 | PRIME 4.10.10 API and Scripting User Guide

Chyron.

This method executes the specified delegate on the thread that owns the control's underlying
window handle.

Syntax:
object Invoke(Delegate method)
Example:

To enable a MyButton button on the control panel the following code is needed if this is being
done on a separate thread.

// Enable/Disable MyButton on control panel
private void EnableButton(bool enable)

{ if (this.InvokeRequired)

{ Invoke(new Action<bool>(EnableButton), new object [] { enable }
)

¥

else

{

MyButton.Enabled = enable;

¥

}

54 | PRIME 4.10.10 API and Scripting User Guide

Chyron.

FrameRate

Contains information about the frame rate.

Namespace: Chyron.Enterprise.Infrastructure.TimeCode

Name Type Description

FieldRate double Gets the field rate.

Interlaced bool Gets the flag indicating if the frame rate is interlaced.
Rate double Get the rate.

RoundedFieldRate | Int Gets the FieldRate round to an interger.

RoundedRate Int Gets the Rate rounded to an interger.

Type FrameRateType | The FrameRateType is an enumerated value that indicates

the type of this frame rate. Below is a list of valid values and

what they mean.

24 24 Hz
25 25 Hz
30 30 Hz
29 9729.97 Hz

48 48 Hz
50 50 Hz
60 60 Hz
59 9459.94 Hz

23 23 Hz
100 100 Hz

55| PRIME 4.10.10 API and Scripting User Guide

Chyron

Resolution

Contains information about the resolution.

Namespace: Chyron.PowerBox.Scene.Objects

Name Type Description

Width int Gets the width in pixels for this resolution.

Height bool Gets the height in pixel for this resolution.

Size Size Gets the size (height and width) of this resolution.

FrameRate FrameRate Gets the frame rate for this resolution (see FrameRate section).
Interlaced Bool Gets a flag indicating that the resolution is interlaced,
PixelAspect double Gets the pixel aspect ratio for this resolution.

AspectRation float Gets the aspect ratio for this resolution.

56 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

Workflow Logger

Workflow logging is available to the scene scripts by using the runtime instance of the workflow
manager object. There is a single method LogMessage() that can be used for logging to the
WorkFlow Monitor.

Namespace: Chyron.Framework.Application.WorkFlow

Syntax:

void LogMessage(WorkflowEvent eventType, string sceneName, string message)

Example:

using Chyron.Framework.Application.WorkFlow;

WorkflowManager.Instance.LogMessage(
WorkflowEvent.Message,
this.Scene.Name,

"My Message");

57 | PRIME 4.10.10 API and Scripting User Guide

Chyron

In order for logging to work, the user will need to enable it in the PRIME configuration settings

form.

m ChannelBox Prime Settings

G52

x
@ General Logging
i) Browsers Enabled |C:\ChyronHego\PowerBox\Logs | -
(% Startup Scenes Max Log File 5ize | 102400 = KB Delete logs after 10 = days
[& Quality Control
@ Language Enable Workflow Logger |C:\ChyronHegD\PowerBox\Work‘FIDw | -
Action Triggers Script Execution
,{_‘_ BXF Intelligent Interface [Message Object

[Auto create dumnp file

Medified settings will not take effect until an application restart.

Scene State Changes [Data Object

Maximum Log File Size |10 > MB

oK Cancel Apply

Logging Options

These options allow you to fine tune the events/messages that you want PRIME to log. These
options will only be available if the Workflow Logger is enabled.

Action Triggers
Intelligent Interface

If checked enables logging of action triggers.
If checked enables logging of intelligent interface events.

Scene State Changes If checked enables logging of scene state changes.

Script Execution

58 | PRIME 4.10.10 API and Scripting User Guide

If checked allows logging of script execution.

Chyron.

The Workflow monitor available through the PRIME application will display the log entries sent
using the Workflow logger methods list above.

Workflow [7] Copy Events wj Clear Events Edit Appearance

Time Event Scene Description

Automation Response response

Scene Loaded
Scene Opened
Scene vy Played
Scene Stopped
Scene y Closed
omation Command command
Localized message

LI:IEIjing

. ¥ Cra D&

59 | PRIME 4.10.10 API and Scripting User Guide

Each scene has a set of controls that are collectively referred to as the control panel. These
controls are exposed to scripting, providing specialized properties and functions pertinent to
each control type. From the scenes C# script controls are accessed using just their name. For
example, adding a new button control to the scenes control panel will automatically be named
“Button 1”. Accessing this control from the scenes C# script will be by the name Button1.
Although the name of a control can contain spaces these spaces are removed in the scripting
objects name. Accessing a scenes control through the Application Script is different and will be
described in another section.

All controls implement the 1ISceneObject interface, so all properties, events and methods from
this object are available to all of these objects. Most control panel controls correspond to
controls in the Microsoft C# library. To get a more complete list of properties, events and
methods for each of the controls in this section, refer to Microsoft's documentation.

Note — The FilePicker, Time Code Editor and Asset Browser do not correspond to a
Microsoft C# control.

Button

The Button can be used to interact with the scene by performing a process when it is clicked.

Name Type Description

Name string Gets the name of the control

Enabled bool Gets the flag indicating if the control is enabled (true) or
disabled (false).

Visible bool Gets the flag indicating if the control is visible (true) or not
(false).

Text string Gets or sets the buttons label text.

See BeforePropertyChanged in ISceneObject Events section.

See PropertyChanged in ISceneObject Events section.

See AfterPropertyChanged in ISceneObject Events section.

60 | PRIME 4.10.10 API and Scripting User Guide
Chyron

Event triggered when the button is clicked with the mouse.

Syntax:

void Click(object sender, EventArgs args)

Example: This example registers a Click event handler for MyButton Button control. The
handler will change the Buttons Text property to “Stop” if the current text is “Play” and stop the
scenes “MyAction” action. Otherwise if the Button’s text is not “Play” it will change the Buttons
Text property to “Stop” and play the scenes “MyAction” action.

public ScriptTest()

{

InitializeComponent();

MyButton.Click += OnButtonClicked;

// Handles the Click event from MyButton
public void OnButtonClicked(object sender, EventArgs args)

{
var action = this.Scene.Actions.Find("MyAction");
if (MyButton.Text == "Play")
{
MyButton.Text = "Stop";
action.Play();
}
else
{
MyButton.Text == "Play"
action.Stop();
}
}
Label

The Label can be used to help identify fields on the control panel by setting the Text property.

| Name | Type | Description |

61 | PRIME 4.10.10 API and Scripting User Guide
P Chyron

Name string Gets the name of the control

Enabled bool Gets the flag indicating if the control is enabled (true) or
disabled (false).

Visible bool Gets the flag indicating if the control is visible (true) or not
(false).

Text string Gets or sets the labels text.

TextBox

The TextBox can be used to interact with a scene through binding to graphic controls or to
display context-based text generated within script.

Name Type Description

Name string Gets the name of the control

Enabled bool Gets the flag indicating if the control is enabled (true) or
disabled (false).

Visible bool Gets the flag indicating if the control is visible (true) or not
(false).

Text string Gets or sets the text that appears in the text box.

See BeforePropertyChanged in ISceneObject Events section.

See PropertyChanged in ISceneObject Events section.

See AfterPropertyChanged in ISceneObject Events section.

TextChanged

This event is triggered when the TextBox controls Text property has changed. Note that this
event us triggered for every character entered or removed. Register a handler if you want to
perform an operation when the Text property is changed in the TextBox.

Syntax:

void TextChanged(object sender, EventArgs args)

62 | PRIME 4.10.10 API and Scripting User Guide
Ping Chyron

Example

public ScriptTest ()

{
InitializeComponent();
// Get the SAMPLE scene from the ChannelBox database
var scene = ChannelBox.GetScene("SAMPLE");
// Hook up the event handler for the PlayoutStateChange event
scene.PlayoutStateChanged += OnPlayoutStateChanged;
}

// Handles the PlayoutStateChanged event from the scene.
private void OnPlayoutStateChanged(IChannelElement element)

{
// Set the TextBox text to the curent playout state

SceneStateTextBox.Text = element.PlayoutState.ToString();

63 | PRIME 4.10.10 API and Scripting User Guide
o Chyron.

ComboBox

The ComboBox can be used to interact with a control panel combo box. Below is a list of some
of the ComboBox properties and events of interest. To get a more complete list refer to
Microsoft's documentation.

Name Type Description

Name string Gets the name of the control

Enabled bool Gets the flag indicating if the control is enabled (true) or
disabled (false).

Visible bool Gets the flag indicating if the control is visible (true) or not
(false).

Selecteditem ltem Type Gets the current selected item in the combo box or null if no

items are selected. Returns an object which is the type of the
items in the ComboBox.

Items ObjectCollection | Gets the collection of items for the ComboBox. This property
allows the addition and removal of items in the ComboBox.
Items.Count int Gets the number of items in the ComboBox.

See BeforePropertyChanged in ISceneObject Events section.

See PropertyChanged in ISceneObject Events section.

See AfterPropertyChanged in ISceneObject Events section.

64 | PRIME 4.10.10 API and Scripting User Guide
P Chyron

The event is triggered when the selected item is changed in the ComboBox. Register a handler
if you want to perform an operation when the Selectedltem property is changed in the
ComboBox.

Example

Fill in the combo box with the list of all actions in the current scene. Register
OnSelectedindexChanged handler with the SelectedindexChanged event from
MyComboBox. The OnSelectedindexChanged() handler will get the action name from the
ComboBox.Selectedltem property and look up action in the current scenes action list. If the
action is found (not equal to null) and the action is not already playing then execute the Play()
method of the action.

public ScriptTest()

{ InitializeComponent();

foreach(vat action in this.Scene.Actions)

{ MyComboBox.Items.Add(action.Name);

}

MyComboBox.SelectedIndexChanged += OnSelectedIndexChanged;
}

// Handles the SelectedIndexChanged for MyComboBox
private void OnSlectedIndexChanged(object sender, EventArgs args)

{
var name = MyComboBox.SelectedItem as string;

var action = this.Scene.Actions.Find(name);

if (action !=- null && !action.Playing)
{

}

action.Play();

65 | PRIME 4.10.10 API and Scripting User Guide

Chyron

CheckBox

The CheckBox can be used to interact with the scene by performing a process when it is
checked or unchecked.

Name Type Description

Name string Gets the name of the control

Enabled bool Gets the flag indicating if the control is enabled (true) or
disabled (false).

Visible bool Gets the flag indicating if the control is visible (true) or not
(false).

Checked bool Gets the flag indicating if the checkbox in checked (true) or not

(false).

See BeforePropertyChanged in ISceneObject Events section.

See PropertyChanged in ISceneObject Events section.

See AfterPropertyChanged in ISceneObject Events section.

66 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

The event is triggered when the check state of the CheckBox has changed.

Syntax:

void CheckedChanged(object sender, EventArgs args)

Example:

public ScriptTest()
{

InitializeComponent();

MyCheckBox.CheckedChanged += OnCheckedChanged;

// Handles the CheckedChanged event from MyCheckBox
public void OnCheckedChanged(object sender, EventArgs args)
{

}

// Your code for handling the checkbox checkedchanged event

67 | PRIME 4.10.10 API and Scripting User Guide

Chyron.

RadioButton

The RadioButton can be used to interact with the scene by performing a process when it is
checked or unchecked.

Name Type Description

Name string Gets the name of the control

Enabled bool Gets the flag indicating if the control is enabled (true) or
disabled (false).

Visible bool Gets the flag indicating if the control is visible (true) or not
(false).

Checked bool Gets the flag indicating if the radio button in checked (true) or

not (false).

See BeforePropertyChanged in ISceneObject Events section.

See PropertyChanged in ISceneObject Events section.

See AfterPropertyChanged in ISceneObject Events section.

68 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

The event is triggered when the check state of the RadioButton has changed.

Syntax:

void CheckedChanged(object sender, EventArgs args)

Example:

public ScriptTest()
{

InitializeComponent();

MyRadioButton.CheckedChanged += OnCheckedChanged;

// Handles the CheckedChanged event from MyRadioButton
public void OnCheckedChanged(object sender, EventArgs args)
{

}

// Your code for handling the radio button checkedchanged event

69 | PRIME 4.10.10 API and Scripting User Guide

Chyron.

NumericUpDown

The NumericUpDown can be used to interact with the current scene by setting a numeric
value.

Name Type Description

Name string Gets the name of the control

Enabled bool Gets the flag indicating if the control is enabled (true) or
disabled (false).

Visible bool Gets the flag indicating if the control is visible (true) or not
(false).

Value decimal Gets the value contained in the control.

Minimum decimal Gets or sets the minimum value that the NumericUpDown Value
can be set.

Maximum decimal Gets or sets the maximum value that the NumericUpDown
Value can be set.

See BeforePropertyChanged in ISceneObject Events section.

See PropertyChanged in ISceneObject Events section.

See AfterPropertyChanged in ISceneObject Events section.

70 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

ValueChanged
This event is triggered when the NumericUpDowns controls Value property has changed.

Syntax:

void ValueChanged(object sender, EventArgs args)

Example:

public ScriptTest ()

{
InitializeComponent();
// Register handler
MyNumericUpDown.ValueChanged += OnValueChanged;
}

// Handles the ValueChanged event from the NumbericUpDown control
public void OnValueChanged(object sender, EventArgs args))
{

}

// Your code to handle the ValeuChanged event of the NumericUpDown control

71 | PRIME 4.10.710 API and Scripting User Guide
P Chyron.

TrackBar

The TrackBar can be used to interact with the current scene by setting a numeric value.

Name Type Description

Name string Gets the name of the control

Enabled bool Gets the flag indicating if the control is enabled (true) or
disabled (false).

Visible bool Gets the flag indicating if the control is visible (true) or not
(false).

Value decimal Gets or sets the value contained in the control.

Minimum decimal Gets or sets the minimum value that the TrackBar Value can be
set.

Maximum decimal Gets or sets the maximum value that the TrackBar Value can be
set.

See BeforePropertyChanged in ISceneObject Events section.

See PropertyChanged in ISceneObject Events section.

See AfterPropertyChanged in ISceneObject Events section.

72 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

ValueChanged
This event is triggered when the TrackBars controls Value property has changed.

Syntax:

void ValueChanged(object sender, EventArgs args)

Example:

public ScriptTest ()

{
InitializeComponent();
// Register handler
MyTrackBar.ValueChanged += OnValueChanged;
}

// Handles the ValueChanged event from the TrackBar control
public void OnValueChanged(object sender, EventArgs args))
{

}

// Your code to handle the ValeuChanged event of the TrackBar control

73 | PRIME 4.10.710 API and Scripting User Guide
P Chyron.

ListView

The ListView can be used to display lists of items in the control panel. This object is mostly
used by binding it to a DataObject to display its contents.

Name Type Description

Name string Gets the name of the control

Enabled bool Gets the flag indicating if the control is enabled
(true) or disabled (false).

Visible bool Gets the flag indicating if the control is visible
(true) or not (false).

Selecteditems SelectedListViewltemCollection | Gets the list of selected ListViewltems in the
ListView object.

Selectedindices SelectedIndexCollection Gets the list of selected ListViewltems by index
in the ListView.Iltems collection.

Items ListViewltemCollection Gets the collection of ListViewltems for the
ListView. This property allows the addition and
removal of items in the ListView.

Items.Count int Gets the number of items in the ListView.

See BeforePropertyChanged in ISceneObject Events section.

See PropertyChanged in ISceneObject Events section.

See AfterPropertyChanged in ISceneObject Events section.

74 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

The event is triggered when the selected item is changed in the ListView. Register a handler if
you want to perform an operation when the Selectedltems property is changed in the
ComboBox.

Example:

Register OnSelectedindexChanged handler with the SelectedindexChanged event from
MyListView. The OnSelectedindexChanged() handler will get the

public ScriptTest()
{

InitializeComponent();

MyListView.SelectedIndexChanged += OnSelectedIndexChanged;

}

// Handles the SelectedIndexChanged for MylListView
private void OnSlectedIndexChanged(object sender, EventArgs args)

{
foreach (var item in MyListView.Items.OfType<ListViewItem>())

{
}

// Your code to process selected ListViewItems

75| PRIME 4.10.10 API and Scripting User Guide

Chyron

FilePicker

The FilePicker can be used to interact with the scene by allowing files to be selected so that
File properties on other objects can be modified.

Name Type Description

Name string Gets the name of the control

Enabled bool Gets the flag indicating if the control is enabled (true) or
disabled (false).

Visible bool Gets the flag indicating if the control is visible (true) or not
(false).

File string Gets the file path selected by the file picker.

See BeforePropertyChanged in ISceneObject Events section.

See PropertyChanged in ISceneObject Events section.

See AfterPropertyChanged in ISceneObject Events section.

76 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

The event is triggered when the file is changed in the FilePicker control.

Syntax:

void FileChanged()

Example

Register OnFileChanged handler with the FileChanged event from MyFilePicker so that some
processing can be performed in the OnFileChanged() handler.

public ScriptTest()
{

InitializeComponent();
MyFilePicker.FileChanged += OnFileChanged;

}

// Handles the FileChanged for MyFilePicker
private void OnFileChanged()

{

var file = MyFilePicker.File;

// You code to handle the file changed event from the FilePicker

77 | PRIME 4.10.10 API and Scripting User Guide

Chyron.

AssetBrowser

The AssetBrowser can be used to interact with the scene by allowing asset files to be selected
for the current projects.

Name Type Description

Name string Gets the name of the control

Enabled bool Gets the flag indicating if the control is enabled (true) or
disabled (false).

Visible bool Gets the flag indicating if the control is visible (true) or not
(false).

File string Gets the file path selected by the asset browser.

See BeforePropertyChanged in ISceneObject Events section.

See PropertyChanged in ISceneObject Events section.

See AfterPropertyChanged in ISceneObject Events section.

78 | PRIME 4.10.10 API and Scripting User Guide

Chyron.

The event is triggered when the file is selected in the AssetBrowser control.
Syntax:

void FileChanged()

Example:

Register OnFileChanged handler with the FileChanged event from MyAssetBrowser so that
some processing can be performed in the OnFileChanged() handler.

public ScriptTest()
{

InitializeComponent();
MyAssetBrowser.FileChanged += OnFileChanged;

}

// Handles the FileChanged for MyAssetBrowser
private void OnFileChanged()

{

var file = MyFilePicker.File;

// You code to handle the file changed event from the AssetBrowser

79 | PRIME 4.10.10 API and Scripting User Guide

Chyron.

PictureBox

The PictureBox can be used to interact with the scene by allowing images to be displayed in

the control panel.

Name Type Description

Name string Gets the name of the control

Enabled bool Gets the flag indicating if the control is enabled (true) or
disabled (false).

Visible bool Gets the flag indicating if the control is visible (true) or not
(false).

Image Image Gets or sets the image to be displayed in the picture box.

Example:

Sets the image of the picture box when the image file is selected from the system.

public ScriptTest()

{

InitializeComponent();

ImageFilePicker.FileChanged += OnFileChanged;

}

// Handles the FileChanged for ImageFilePicker
private void OnFileChanged()

{

var file = ImageFilePicker.File;

MyPictureBox.Image

new Bitmap(file);

80 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

TimeCodeEditor

The TimeCodeEditor can be used to interact by using a timer to trigger actions or processes.

Name Type Description

Name string Gets the name of the control

Enabled bool Gets the flag indicating if the control is enabled (true) or
disabled (false).

Visible bool Gets the flag indicating if the control is visible (true) or not
(false).

Frames int Gets or sets the number of frames.

See BeforePropertyChanged in ISceneObject Events section.

See PropertyChanged in ISceneObject Events section.

See AfterPropertyChanged in ISceneObject Events section.

81 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

This event is triggered when the TimeCodeEditor controls frames have changed.

Syntax:

void FranmesChanged()

Example:

public ScriptTest()
{

InitializeComponent();
MyTimeCodeEditor.FramesChanged += OnFramesChanged;

}

// Handles the FramesChanged event for MyTimeCodeEditor
private void OnFramesChanged()

{
}

// You code to handle the FramesChanged event

82 | PRIME 4.10.10 API and Scripting User Guide

Chyron.

These controls are graphics based controls that implement the IDynamicObject and
ISceneObject interfaces, so all properties, event and methods from these interfaces are
implemented in the following objects.

Text

Object used for 2D and 3D text display.

Name Type Description

Name string Gets the name of the graphic object.

Enabled bool Gets the flag indicating if the graphics object is enabled
(true) or disabled (false).

Scene IScene Gets the scene this object belongs to.

Opacity double Gets or sets the opacity or the graphic object.

Text string Gets or sets the text for this graphic object.

Effects SceneObjectlist<|Effect> | Gets the list of effects associated with this graphics
object.

Animations AnimationList Gets the list of animations associated with this graphic
object.

Events EventList Gets the list of events associated with this graphic
object.

_2d _2dTextProperties Gets the 2D text properties.

_3d _3dTextProperties Gets the 3D text properties.

See BeforePropertyChanged in ISceneObject Events section

See PropertyChanged in ISceneObject Events section.

See AfterPropertyChanged in ISceneObject Events section.

See PropertyAnimated in IDynamicObject Events section.

83 | PRIME 4.10.10 API and Scripting User Guide
P Chyron

Event is triggered when the Text is property is changed in the Text graphics object.

Syntax:

void TextChanged(ISceneObject sceneObject)

Example:

84 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

Image

Object used for displaying images on the Canvas.

Name Type Description

Name string Gets the name of the graphic object.

Enabled bool Gets the flag indicating if the graphics object is enabled
(true) or disabled (false).

Scene IScene Gets the scene this object belongs to.

Opacity double Gets or sets the opacity or the graphic object.

Effects SceneObjectList<IEffect> | Gets the list of effects associated with this graphics
object.

Animations AnimationList Gets the list of animations associated with this graphic
object.

Events EventList Gets the list of events associated with this graphic
object.

File string Gets or sets the image file to be displayed within this
graphics object.

See BeforePropertyChanged in ISceneObject Events section

See PropertyChanged in ISceneObject Events section.

See AfterPropertyChanged in ISceneObject Events section.

See PropertyAnimated in IDynamicObject Events section.

Event is triggered when the Image is property is changed in the Image graphics object.
Syntax:
void ImageChanged(ISceneObject sceneObject)

Example:

85| PRIME 4.10.10 API and Scripting User Guide
P Chyron.

Clip

Object used for clips in the Canvas.

Name Type Description

Name string Gets the name of the graphic object.

Enabled bool Gets the flag indicating if the graphics object is enabled
(true) or disabled (false).

Scene IScene Gets the scene this object belongs to.

Opacity double Gets or sets the opacity or the graphic object.

Effects SceneObjectList<IEffect> | Gets the list of effects associated with this graphics
object.

Animations AnimationList Gets the list of animations associated with this graphic
object.

Events EventList Gets the list of events associated with this graphic
object.

File string Gets or sets the image file to be displayed within this
graphics object.

See BeforePropertyChanged in ISceneObject Events section.

See PropertyChanged in ISceneObject Events section.

See AfterPropertyChanged in ISceneObject Events section.

See PropertyAnimated in IDynamicObject Events section.

Event is triggered when the clip finishes playing.
Syntax:
void Finished(ISceneObject sceneObject)

Example:

86 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

Cube

Object used for 3D cube object in the Canvas.

Name Type Description

Name string Gets the name of the graphic object.

Enabled bool Gets the flag indicating if the graphics object is enabled
(true) or disabled (false).

Scene IScene Gets the scene this object belongs to.

Opacity double Gets or sets the opacity or the graphic object.

Effects SceneObjectList<IEffect> | Gets the list of effects associated with this graphics
object.

Animations AnimationList Gets the list of animations associated with this graphic
object.

Events EventList Gets the list of events associated with this graphic
object.

File string Gets or sets the image file to be displayed within this
graphics object.

See BeforePropertyChanged in ISceneObject Events section.

See PropertyChanged in ISceneObject Events section.

See AfterPropertyChanged in ISceneObject Events section.

See PropertyAnimated in IDynamicObject Events section.

87 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

Model

Object used for model on the Canvas.

Name Type Description

Name string Gets the name of the graphic object.

Enabled bool Gets the flag indicating if the graphics object is enabled
(true) or disabled (false).

Scene IScene Gets the scene this object belongs to.

Opacity double Gets or sets the opacity or the graphic object.

Effects SceneObjectList<IEffect> | Gets the list of effects associated with this graphics
object.

Animations AnimationList Gets the list of animations associated with this graphic
object.

Events EventList Gets the list of events associated with this graphic
object.

File string Gets or sets the image file to be displayed within this
graphics object.

See BeforePropertyChanged in ISceneObject Events section.

See PropertyChanged in ISceneObject Events section.

See AfterPropertyChanged in ISceneObject Events section.

See PropertyAnimated in IDynamicObject Events section.

Event is triggered when the File property of the Model is changed.
Syntax:
void FileChanged(ISceneObject sceneObject)

Example:

88 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

Effects

These controls are graphics effects that may be associated with graphical controls. These
objects implement the IDynamicObject and ISceneObiject interfaces, so all properties, events
and methods from these interfaces are implemented in the following objets.

Name Type Description

Name string Gets the name of the graphic object.

Enabled bool Gets the flag indicating if the graphics object is
enabled (true) or disabled (false).

Scene IScene Gets the scene this object belongs to.

Opacity double Gets or sets the opacity or the graphic object.

Effects SceneObijectList<IEffect> Gets the list of effects associated with this graphics
object.

Animations AnimationList Gets the list of animations associated with this graphic
object.

Events EventList Gets the list of events associated with this graphic
object.

See BeforePropertyChanged in ISceneObject Events section.

See PropertyChanged in ISceneObject Events section.

See AfterPropertyChanged in ISceneObject Events section.

See PropertyAnimated in IDynamicObject Events section.

89 | PRIME 4.10.10 API and Scripting User Guide
P Chyron

Crop

Name Type Description

Name string Gets the name of the graphic object.

Enabled bool Gets the flag indicating if the graphics object is enabled
(true) or disabled (false).

Scene IScene Gets the scene this object belongs to.

Opacity double Gets or sets the opacity or the graphic object.

Effects SceneObjectList<|Effect> | Gets the list of effects associated with this graphics
object.

Animations AnimationList Gets the list of animations associated with this graphic
object.

Events EventList Gets the list of events associated with this graphic
object.

See BeforePropertyChanged in ISceneObject Events section.

See PropertyChanged in ISceneObject Events section.

See AfterPropertyChanged in ISceneObject Events section.

See PropertyAnimated in IDynamicObject Events section.

90 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

Mask

Name Type Description

Name string Gets the name of the graphic object.

Enabled bool Gets the flag indicating if the graphics object is enabled
(true) or disabled (false).

Scene IScene Gets the scene this object belongs to.

Opacity double Gets or sets the opacity or the graphic object.

Effects SceneObjectList<|Effect> | Gets the list of effects associated with this graphics
object.

Animations AnimationList Gets the list of animations associated with this graphic
object.

Events EventList Gets the list of events associated with this graphic
object.

See BeforePropertyChanged in ISceneObject Events section.

See PropertyChanged in ISceneObject Events section.

See AfterPropertyChanged in ISceneObject Events section.

See PropertyAnimated in IDynamicObject Events section.

91 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

Material

Name Type Description

Name string Gets the name of the graphic object.

Enabled bool Gets the flag indicating if the graphics object is enabled
(true) or disabled (false).

Scene IScene Gets the scene this object belongs to.

Opacity double Gets or sets the opacity or the graphic object.

Effects SceneObjectList<|Effect> | Gets the list of effects associated with this graphics
object.

Animations AnimationList Gets the list of animations associated with this graphic
object.

Events EventList Gets the list of events associated with this graphic
object.

See BeforePropertyChanged in ISceneObject Events section.

See PropertyChanged in ISceneObject Events section.

See AfterPropertyChanged in ISceneObject Events section.

See PropertyAnimated in IDynamicObject Events section.

92 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

Light

Name Type Description

Name string Gets the name of the graphic object.

Enabled bool Gets the flag indicating if the graphics object is enabled
(true) or disabled (false).

Scene IScene Gets the scene this object belongs to.

Opacity double Gets or sets the opacity or the graphic object.

Effects SceneObjectList<|Effect> | Gets the list of effects associated with this graphics
object.

Animations AnimationList Gets the list of animations associated with this graphic
object.

Events EventList Gets the list of events associated with this graphic
object.

See BeforePropertyChanged in ISceneObject Events section.

See PropertyChanged in ISceneObject Events section.

See AfterPropertyChanged in ISceneObject Events section.

See PropertyAnimated in IDynamicObject Events section.

93 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

Render Texture

Name Type Description

Name string Gets the name of the graphic object.

Enabled bool Gets the flag indicating if the graphics object is enabled
(true) or disabled (false).

Scene IScene Gets the scene this object belongs to.

Opacity double Gets or sets the opacity or the graphic object.

Effects SceneObjectList<|Effect> | Gets the list of effects associated with this graphics
object.

Animations AnimationList Gets the list of animations associated with this graphic
object.

Events EventList Gets the list of events associated with this graphic
object.

See BeforePropertyChanged in ISceneObject Events section.

See PropertyChanged in ISceneObject Events section.

See AfterPropertyChanged in ISceneObject Events section.

See PropertyAnimated in IDynamicObject Events section.

94 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

Warp

Name Type Description

Name string Gets the name of the graphic object.

Enabled bool Gets the flag indicating if the graphics object is enabled
(true) or disabled (false).

Scene IScene Gets the scene this object belongs to.

Opacity double Gets or sets the opacity or the graphic object.

Effects SceneObjectList<|Effect> | Gets the list of effects associated with this graphics
object.

Animations AnimationList Gets the list of animations associated with this graphic
object.

Events EventList Gets the list of events associated with this graphic
object.

See BeforePropertyChanged in ISceneObject Events section.

See PropertyChanged in ISceneObject Events section.

See AfterPropertyChanged in ISceneObject Events section.

See PropertyAnimated in IDynamicObject Events section.

95 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

Page Turn

Name Type Description

Name string Gets the name of the graphic object.

Enabled bool Gets the flag indicating if the graphics object is enabled
(true) or disabled (false).

Scene IScene Gets the scene this object belongs to.

Opacity double Gets or sets the opacity or the graphic object.

Effects SceneObjectList<|Effect> | Gets the list of effects associated with this graphics
object.

Animations AnimationList Gets the list of animations associated with this graphic
object.

Events EventList Gets the list of events associated with this graphic
object.

See BeforePropertyChanged in ISceneObject Events section.

See PropertyChanged in ISceneObject Events section.

See AfterPropertyChanged in ISceneObject Events section.

See PropertyAnimated in IDynamicObject Events section.

96 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

Transition

Name Type Description

Name string Gets the name of the graphic object.

Enabled bool Gets the flag indicating if the graphics object is enabled
(true) or disabled (false).

Scene IScene Gets the scene this object belongs to.

Opacity double Gets or sets the opacity or the graphic object.

Effects SceneObjectList<|Effect> | Gets the list of effects associated with this graphics
object.

Animations AnimationList Gets the list of animations associated with this graphic
object.

Events EventList Gets the list of events associated with this graphic
object.

See BeforePropertyChanged in ISceneObject Events section.

See PropertyChanged in ISceneObject Events section.

See AfterPropertyChanged in ISceneObject Events section.

See PropertyAnimated in IDynamicObject Events section.

97 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

Crawl

Name Type Description

Name string Gets the name of the graphic object.

Enabled bool Gets the flag indicating if the graphics object is enabled
(true) or disabled (false).

Scene IScene Gets the scene this object belongs to.

Opacity double Gets or sets the opacity or the graphic object.

Effects SceneObjectList<|Effect> | Gets the list of effects associated with this graphics
object.

Animations AnimationList Gets the list of animations associated with this graphic
object.

Events EventList Gets the list of events associated with this graphic
object.

See BeforePropertyChanged in ISceneObject Events section.

See PropertyChanged in ISceneObject Events section.

See AfterPropertyChanged in ISceneObject Events section.

98 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

See PropertyAnimated in IDynamicObject Events section.
Example:

The scene uses a FilePicker control on the Control Panel to allow the file used in the crawl
effect to be changed while the scene is on air. It handles the FileChanged event of the
FilePicker control to stop the current crawl update the file and restart.

public ScriptTest()
{

InitializeComponent();

private void MyFilePicker_FileChanged()

{
var filePath = MyFilePicker.File;

if (! string.IsNullOrWhiteSpace(filePath) &&
System.IO.File.Exists(filePath))

{
MyCrawl.Stop();
MyCrawl.File = filePath;
MyCrawl.Start();

}

99 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

Character

Name Type Description

Name string Gets the name of the graphic object.

Enabled bool Gets the flag indicating if the graphics object is enabled
(true) or disabled (false).

Scene IScene Gets the scene this object belongs to.

Opacity double Gets or sets the opacity or the graphic object.

Effects SceneObjectList<|Effect> | Gets the list of effects associated with this graphics
object.

Animations AnimationList Gets the list of animations associated with this graphic
object.

Events EventList Gets the list of events associated with this graphic
object.

See BeforePropertyChanged in ISceneObject Events section.

See PropertyChanged in ISceneObject Events section.

See AfterPropertyChanged in ISceneObject Events section.

See PropertyAnimated in IDynamicObject Events section.

100 | PRIME 4.10.10 API and Scripting User Guide
e Chyron.

Canvas Objects

Many canvas objects have events that can trigger C# scripting code. The figure below shows an
image of the Canvas with the toolbox objects that have events available for C# scripting
highlighted.

101 | PRIME 4.10.10 API and Scripting User Guide
Chyron

An author can add a text object to the scene by clicking the Text button a' Tet of the Toolbox
panel on the left hand side of the canvas. Once added you will see the text properties on the

right hand side of the canvas.

@
Render
~ Transform
Position X (4800 = ¥ |5075 1= Z |00 =
Scale X (100 = v 100 & Z [1.00 f(|a&
Rotation X |0.0 = ¥ |00 = Z |00 £
Pivot X |00 = ¥ |00 = Z |00 =
~ Surface
Size Width 960 = Height 133 -
Text Width |0 = Height |0 =
Opacity [1000 [= |
v Text
Style Arial 100 (Text 1) ~ E]
Font |Aria| v|
Size 1000 |2 |
B 7 [[=a 2D
= = o

Click on the Events tab to view the event triggers available to the text object as seen below.

Properties Events

Text Changed

102 | PRIME 4.10.10 API and Scripting User Guide

Chyron.

Clicking on the Text Changed drop down box will display the list of items that can be triggered
when the text is changed.

Properties Events

Text Changed | Script: Text] TextChanged
=) I Actions

[Default

[Action 1

i] Text1_TextChanged

Check the Text1_TextChanged item under Scripting and the Text1_TextChanged() method will
be automatically added to your scene script.

B ChannesBos Prime Scene Editor - Scripting Testpb - @ x
g PowerBox.Scripting.ScriptingTest ~ HEGO
Tori [Piayout
mancspace PowerBox Scripting E L
{ [41_TentChanged(SeeneObject seeneObject) = Properties Events
using System; =
using System.Collections.Generic;
using System.Drawing;
using System.Windows.Forms;
using Chyron.PowerBox.Scene.Objects;
public partial class ScriptingTest
{
public ScriptingTest()
InitializeComponent();
private void Text1_TextChanged(ISceneObject sceneObject)
{
Adtions x
Default Action | % Add Acticn -
> Keyhame [(Cursor) | 00:00:00.00 5 Zoom £ |]
T Lavital b | Lol ! e [FRRIETY ot sl | . Dt
o0 oo e o koo 00" 00 sob g0 Mined g0 ke k00T ks ises ' 600 1800
35108AM

Losded Clip File: Basketball_1.gtc

From the script editor the author may enter the code to be executed when the text objects
TextChanged event is triggered see the sample below.

Sample Usage:

private void Textl_TextChanged(ISceneObject sceneObject)
{

// Enter your code here

103 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

An author can add a clip to the scene by clicking the Clip button & Clip of the Toolbox panel
on the left hand side of the canvas. Once added you will see the clip properties on the right
hand side of the canvas.

S — s

Render

~ Transform

Position X |960.0 & v 3400 & Z |00 =
Saale x [100 & v [100 B z oo [Ea
Rotation X (0.0 = v |00 = 7 |00 =
Pivot X |00 = ¥ |00 = z |00 =
Origin X (050 [v 030 (£
v Surface
Size Width 1920 |2 Height [1080 =] & |4
Opacity 1000 = '
v Clip
review 14 44 &> B B0 00 DA
File 2% Basketball_1.gtc v
Command | Mone et
Frame 00:00:00.00 = Length 00:00:13.02 =
Trim In 00:00:00.00 3| Trim Qut |00:00:13.02 % | [+

Click on the Events tab to view the events triggers available to the clip as below.

Properties Events

Finizhed -

Clicking on the Finished drop down box will display the list of items that can be triggered when
the clip finishes.

104 | PRIME 4.10.10 API and Scripting User Guide
e Chyron.

Properties Events

Finished

Script: Clip1_Finished

= @Amnn;
- O Default
[Action 1
& Clip1
= [F Seripting
Clip1_Finished

Check the Clip1_Finished item under Scripting and the Clip1_Finished() method will be
automatically added to your scene script.

System.Collections.Generic;
System_Drawing;

using System.Windows.Forms;

using Chyron.PowerBox.Scene.Objects;
public partial class ScriptingTest
public ScriptingTest()

InitializeComponent();

private void Clip1_Finished(ISceneObject sceneObject

b Cio) FiishediScencObiedt scencDbrect)

Loaded Clip Fi: Baskesbal gt

- 8 x
HEGO
Brorou

2] Propesies| s
acton

AAAAA 2 | B

G s e
3101

From the script editor the author may enter the code to be executed when the clip Finished
event is triggered see the sample below.

Sample Usage:

private void Clipl_Finished(ISceneObject sceneObject)

{
¥

// Enter your code here

105 | PRIME 4.10.10 API and Scripting User Guide

Chyron.

An author can add a clip to the scene by clicking the Image button Image of the Toolbox
panel on the left hand side of the canvas. Once added you will see the image properties on the
right hand side of the canvas.

=
Render

v Transform
Position X [960.0 = ¥ [5400 = Z |00 L
Scale K100 = ¥ 100 =~ Z 100 = &
Rotation X 0.0 = Y |00 = Z |00 =
Pivot X (00 = ¥ |00 = Z |00 z
Origin X (050 [& ¥ 050 =

v Surface
Size Width 1440 |2 Height (900 [& <
Opacity [1000 = |

v Image
File N Test\FadePNG v
Color '7

v Shadow
[] Enabled

Click on the Events tab to view the event triggers available to the image object as seen below.
Properties Events

File Changed b

Clicking on the File Changed drop down box will display the list of items that can be triggered
when the images file is changed.

106 | PRIME 4.10.10 API and Scripting User Guide
e Chyron.

Properties Events

File Changed

Script: Imagel_FileChanged

o @ Actions
i [Default
. [] Action 1

(A Image1_FileChanged

Check the Image1_FileChanged item under Scripting and the Image1_FileChanged() method
will be automatically added to your scene script.

9 Channudb Prime Scana Edtsr - Scipting Test b

ting.ScriptingTest

PowerBox.Seripting

ing System;
ing System.Collecticns.Generic;
System.Drawin

using System.windows.Forms;
using Chyron.PowerBox.Scene.Objects;

public partial class ScriptingTest

public ScriptingTest()

T -

Londed Clip i Beketball1gtc

From the script editor the author may enter the code to be executed when the images

] InitializeComponent();
f
private void Imagei_FileChanged(ISceneObject scenedbject)
5
Actons

FileChanged event is triggered see the sample below.

Sample Usage:

private void Imagel_FileChanged(ISceneObject sceneObject)

{
}

// Enter your code here

107 | PRIME 4.10.10 API and Scripting User Guide

;;;;;;;

Chyron.

An author can add a warp effect to a scene object by clicking the Warp button] Warp of the
Toolbox panel on the left hand side of the canvas. Once added you will see the warp properties
on the right hand side of the canvas.

1 [Warp |
v Clip

rreview 4 44 > B B8 B0 DH

File v

Command | MNone ~

Frame 00:00:00.00 2] Length |00:00:00.00 2

Trimin [00:00:00.00 2| Trim Out |00:00:00.00 = | e

[Loop

Click on the Events tab to view the events triggers available to the warp effect as seen below.

Properties Events

Finished -

108 | PRIME 4.10.10 API and Scripting User Guide
e Chyron.

Clicking on the Finished drop down box will display the list of items that can be triggered when
the warp effect finishes.

Properties | Events

Finished | Script: Warp1 Finished -
Er I Actions
i [Default
= [Action 1
Hwarp 1
& [Z] Scripting
i 7] Warp1_Finished

Check the Warp1_Finished item under Scripting and the Warp1_Finished() method will be
automatically added to your scene script.

9 Crannisspreme scem - Scrpng Tk g a

#8 PowerBox Scripting ScriptingTest

namespace PowerBox.Scripting s
using System;
using System.Collections.Generic;
ing System.Drawing;
using System.Windows.Forms;
using Chyron.PowerBox.Scene.Objects;
public partial class ScriptingTest

public SeriptingTest

InitializeComponent();

private void Warpl_Finished(ISceneObject sceneObject

Lendes o foe Basembel e

From the script editor the author may enter the code to be executed when the warp effects
Finished event is triggered see the sample below.

Sample Usage:

private void Warpl_Finished(ISceneObject sceneObject)

{
}

// Enter your code here

An author can add a transition effect to a scene object by clicking the Transition button

B Transition ¢ the Toolbox panel on the left hand side of the canvas. Once added you will see

the warp properties on the right hand side of the canvas.

109 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

Properties| Events | e Click Events tab to get transition

------------- events
B] |Transitior| 1
v Transition
Type File s
Behavior | On Change =
File =

Duration | 00:00:00.00 =

Offset 00:00:00.00 =

Click on the Events tab to view the events triggers available to the transition effect as seen
below.

Properties Events

Before Update A

After Update A

110 | PRIME 4.10.10 API and Scripting User Guide
o Chyron.

Clicking on the Before Update drop down box will display the list of items that can be triggered
before the transition effect updates the associated scene object.

Properties Events

Before Update | Script: Transition]_BeforeUpdate -
@ Actions
| [Defautt
[Actien 1
& [E] Scripting
L [Transition1_BeforeUpdate

After Update

Check the Transition1_BeforeUpdate item under Scripting and the
Transition1_BeforeUpdate() method will be automatically added to your scene script.

o x
HEGO
e

From the script editor the author may enter the code to be executed when the transition effects
BeforeUpdate event is triggered see the sample below.

Sample Usage:

private void Transitionl_BeforeUpdate(ISceneObject sceneObject)

{
}

// Enter your code here

Clicking on the After Update drop down box will display the list of items that can be triggered
before the transition effect updates the associated scene object.

111 | PRIME 4.10.10 API and Scripting User Guide
e Chyron.

Properties | Events

Before Update -

After Update | Script: Transition]_AfterUpdate -
@ Actions

i [Default

*- [Action 1
& [Z] Seripting

i] Transition1_AfterUpdate

Check the Transition1_AfterUpdate item under Scripting and the Transition1_AfterUpdate()
method will be automatically added to your scene script.

private void Transition1_AfterUpdate(ISceneObject sceneObject)

R TEr—r

From the script editor the author may enter the code to be executed when the transition effects
AfterUpdate event is triggered see the sample below.

Sample Usage:

private void Transitionl_AfterUpdate(ISceneObject sceneObject)

{
}

// Enter your code here

An author can add a crawl effect to a scene object by clicking the Warp button & Crawl of the
Toolbox panel on the left hand side of the canvas. Once added you will see the crawl properties
on the right hand side of the canvas.

112 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

43|Craw|1 a

~ Transform

Position X |0.0 = ¥ [-350 = Z 0.0 =

-

v Surface
Size Width 960 = Height (133 = a
v Crawl
e G BB BIIH B
Direction Left ~
Speed 5.0 = '
Spacing 50 =
LeftEdge |0 = Right Edge |0 =
File w
Spacer v
Command | Mone ~
Loop Off v

Click on the Events tab to view the events triggers available to the warp effect as seen below.

Properties Events

Start Of Line =
End Of Line =
End Of File 7
End Of Data =

Clicking on the Start Of Line drop down box will display the list of items that can be triggered
when the crawl effect is starting a new line.

113 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

Properties Events

Start Of Line | Script: Crawl1_StartOfLine -
) @ Actions

End Of Line [Defaut

End OfFile | | , LJAction

4 Crawl 1

End Of Data | = =] Scripting

Crawl1_StartOfLine

Check the Crawl1_StartOfLine item under Scripting and the Crawl1_StartOfLine() method will
be automatically added to your scene script.

P Chonlbon P S Bt - Scripting Tt e

8 PowerBox. Scripting ScriptinaTest 2
-

amespace PowerBox.Scripting

public Scriptinglest()

InitializeComponent

rivate void Crawll_StartOfLine(ISceneObject scene object

p
I

From the script editor the author may enter the code to be executed when the crawl effects
StartOfLine event is triggered see the sample below.

Sample Usage:

private void Crawll_StartOfLine(ISceneObject sceneObject)
{

}

// Enter your code here

Clicking on the End Of Line drop down box will display the list of items that can be triggered
when the crawl effect is ending a line.

114 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

Properties Events

Start Of Line

End Of Line

End Of File

End Of Data

Script: Crawl1_EndOfLine

= I Actions
- [Default
[Action 1
48 Crawl 1
& [=] Scripting
Crawl1_EndOfLine

Check the Crawl1_EndOfLine item under Scripting and the Crawl1_EndOfLine() method will
be automatically added to your scene script.

“1g PowerBon Scripting ScriptingTest

T namespace PowerBox.Scripting
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Windows.Forms;
using Chyron.PowerBox.Scene.Objects;
public partial class ScriptingTest

public ScriptingTest

InitializeComponent ();

private void Crawll_EndOfLine(IScencObject scen

eObject)

»

From the script editor the author may enter the code to be executed when the crawl effects
EndOfLine event is triggered see the sample below.

Sample Usage:

private void Crawll_EndOfLine(ISceneObject sceneObject)

{
¥

// Enter your code here

115 | PRIME 4.10.10 API and Scripting User Guide

Chyron.

Clicking on the End Of File drop down box will display the list of items that can be triggered
when the crawl effect reaches the end of file.

Properies | Events
Start Of Line -

End Of Line -

End Of File | Script: Crawl1_EndOfFile ~
= 18 Actions
i [Default
i [Action 1
& Crawl 1
& [seripting
i [Crawlt_EndOfFile

End Of Data

Check the Crawl1_EndOfFile item under Scripting and the Crawl1_EndOfFile() method will be
automatically added to your scene script.

x Scripting ScriptingTest

Beieon

€ PowerBox.Scripting

public partial class ScriptingTest

public ScriptingTest

InitializeComponent();

rivate void Crawll_EndOfFile(ISceneObject sceneObject)

i

From the script editor the author may enter the code to be executed when the crawl effects
EndOfFile event is triggered see the sample below.

Sample Usage:

private void Crawll_EndOfFile(ISceneObject sceneObject)
{

}

// Enter your code here

116 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

Clicking on the End Of Data drop down box will display the list of items that can be triggered
when the crawl effect is at the end of data.

Properties | Events
Start Of Line -
End Of Line -

End Of File -

End Of Data | Script: Crawl1_EndOfData -

- 8 Actions
[Default

[Actien 1

& Crawl 1

= [E] Scripting
Crawl1_EndOfData

Check the Crawl1_EndOfData item under Scripting and the Crawl1_EndOfData() method will
be automatically added to your scene script.

Brwan

ane.Objects;
public partial class ScriptingTest
public ScriptingTest()

InitializeComponent)

rivate vold Crauli EndOfData(ISceneObject sceneObject)

o
k

From the script editor the author may enter the code to be executed when the crawl effects
EndOfData event is triggered see the sample below.

Sample Usage:

private void Crawll_EndOfData(ISceneObject sceneObject)
{

}

// Enter your code here

117 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

Resources
Timer

Timer Properties

118 | PRIME 4.10.10 API and Scripting User Guide
e Chyron.

Finished Event

A scene author can add a timer object to the scene by clicking the Timer button Timer i,
the Toolbox panel on the left hand side. Once added they will see the timer properties on the
right hand side of the scene canvas.

Properties Events

O — @a

v Timer
preview B4 B> B 0D M
Mode Timer Down v
Comman d | Nene ~
Start Time | 00:01:00.00 = Finish Time | 00:00:00.00 [
Time 00:01:00.00 (-
[Loop
v Bindings

o Add $¢ Remove

Target Format

The author can then add a Finished event through the properties tab that gets triggered when
the timer ends.

Finished | Script: Timer1_Finished -~

eadd ¥ 7 sy Actions

= = Scripting
Tirner!_Finished

Keyframe
Name

Triggers

~ Properties

Name

Clicking on the Finished drop down box a list of items that can be triggered is presented. Check
the Timer1_Finished item under Scripting and the Timer1_Finished() method will be
automatically added to your scene script.

119 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

B Channetfin Dime Srene Eriton _Sriinfinn Tectnb

- a8 x
HEGO
[Playout

| Propsities | Euents

‘I"BPcwerEvx.S(nnhnq,Scripiianest ~
namespace PowerBox.Scripting
T {
. using System;
= using System.Collections.Generic;
@ using System.Drawing;
e using System.Windows.Forms;
- using Chyron.PowerBox.Scene.Objects;
L
public partial class ScriptingTest
x {
E public ScriptingTest()
1 InitializeComponent();
R ¥
7]
L]
5
o private void Timerl_Finished(ISceneObject sceneObject)
Sc
" }
o
}
T
©) Timer1

~ (& Parameters
[Parsmeter |
[Parsmeter 2

Bl Expe

~ [control Panel

() Button 1

= saipting o
Default Action | 1% Add Acticn

Action 3 @ | Triggered by (1) B> 0 | B 4 BB M Keyhrame

Foonn bt bt bt
Animaticn oo’ eo" ! he ! oo ! g <
5 Tett ° °

(Cursor) 0000000015

oo’ hod " eon " wo” " Minea T o 00" 0 10

3 seripting Test: Coubd ot find target:

= [Serpting §| HEE
v References
. Add Reference Gt Remove £ Reset
 eterences
= ChyionEnterprise DataObject
riseInfrastructure.
= ChyronEnierprise.ogging

& Chyron. i
® ChytonPoweBocPlayout
® ChyronPowerliorscene
= System

® System.Core.

® System.Drawing

v Emor List
@ 0mors € Refresn

20558 PM

From the script editor the author may enter the code to be executed when the timed event is

triggered see the sample below.
Sample Usage:

private void Timerl_Finished(ISceneObject sceneObject)
{

}

// Your code here

120 | PRIME 4.10.10 API and Scripting User Guide

Chyron.

Timed Event
A scene author can add a timed event to be triggered from the timer properties.

~ Bindings

Target Format

v Events

Finished

Clicking the =P Add button in the Timer Events property section will add an event that can be
triggered based on the time set in the Timer column. Click the Triggers next to the Time and a
list of available items that can be triggered will be displayed. Checking the
Timer1_00_01_00_00 will add the Timer1_00_01_00_00() method automatically to the scenes
script.

T
HEGO
Braea

From the script editor the author may enter the code to be executed when the timed event is
triggered see the sample below.

Sample Usage:

private void Timerl_00_01_00 00(ISceneObject sceneObject)
{

}

// Your code here

121 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

Timer Events

122 | PRIME 4.10.10 API and Scripting User Guide
e Chyron.

Finished Event
The scene author can add a Finished event through the events tab that gets triggered when the
timer finishes.

Properties Events

Finished | Script: Timer]_Finished

= i Actions
+ [Default

i [Action 1
) Timer 1

=] seripting
. [Tirer!_Finished

Clicking on the Finished drop down box a list of items that can be triggered is presented. Check
the Timer1_Finished item under Scripting and the Timer1_Finished() method will be
automatically added to your scene script.

From the script editor the author may enter the code to be executed when the timed event is
triggered see the sample below.

Sample Usage:

private void Timerl_Finished(ISceneObject sceneObject)
{

}

// Your code here

123 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

Started Event
The scene author can add a Started event through the events tab that gets triggered when the
timer starts.

Started | Seript: Timer]_Started
£ @ Actions
Stopped [Defautt
- [Action 1
@ Timer1
2 [z ipting
~ [Timerl_Started

Clicking on the Started drop down box a list of items that can be triggered is presented. Check
the Timer1_Started item under Scripting and the Timer1_Started() method will be automatically
added to your scene script.

««««««

From the script editor the author may enter the code to be executed when the timed event is
triggered see the sample below.

Sample Usage:

private void Timerl_Started(ISceneObject sceneObject)
{

}

// Your code here

124 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

Stopped Event
The scene author can add a Stopped event through the events tab that is triggered when the
timer is stopped.

Properties Events
Finished

Started

Stopped | Script: Timer]_Stopped
= I8 Actions.

- [Timer!_Stopped

Clicking on the Stopped drop down box a list of items that can be triggered is presented. Check
the Timer1_Stopped item under Scripting and the Timer1_Stopped() method will be
automatically added to your scene script.

From the script editor the author may enter the code to be executed when the timed event is
triggered see the sample below.

Sample Usage:

private void Timerl_Stopped(ISceneObject sceneObject)
{

}

// Your code here

125 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

Button Events

The button allows the click event to be handled by the scene author through scripting. Below
are the various methods for adding a button to the control panel so that the click event template
code is automatically generated and added to the C# scripting code.

Toolbox

To add a new button to the control panel the scene author can click the Button 1yytton in
the toolbox list that appears on the left hand side of the control panel. Once added you will see
the Button properties on the right hand side of the control panel as seen below

'8 ChannelBox Prime Scene Editor - Scripting Test.pbx - 8 X%

File Edet View Window Teos Hep CHYRON-EGO

B o o) G 5 ot (S (o
Toolbax x Deee Propeties | Evens
(&) Button A Label % @__sm»m
Text Box Combo Box
a e
e O

e
53 Numeric Up Do... 0 TrackB:
33 ListView 1 File Picker Font [Segoe U1, 900 =l s

5 AssetBrowser [Picture Box
[penel 3 Time Code Editor

Acions x
Default Action1 % Add Action i
Action 19> @ | % Tiggered By ©).. B B ‘ UMM Keyframe [(Curon) | 00000000/2] 4 9 Zoom £ | S}

v, | | | | | | | | | |
Animtion L R N Y R B R TR T I TN IR I IR T .

(Databindings)
The detabindings for the control.

The button properties available to the scene author are shown below. We are interested in the
Click section, which contains the list of item that can be triggered when the button is pressed.

Properties Events

R —

~ Appearance

Text [Button 1 |

Font [Segoe Ul 9.00 = e

~ Click

= @ Actions
[Defautt
[Action 1

) =] scripting

[Button?_Click

126 | PRIME 4.10.10 API and Scripting User Guide
pine Chyron.

Check the Button1_Click item under the Scripting section and the system will automatically add
the Button1_Click() method to you scenes script.

B ChannelBox Prime Scene Editor - Sripting Testpbe - 8 x
(%8 PowerBox Scripting.ScriptingTest] ;EGO
Playout
namespace PowerBox.Scripting !
.] Properties | Events
{ -
! using System; = = [scrpting -
using System.Collections.Generic; e
using System.Drawing; o Reset

using System.Windows.Forms;
using Chyron.PowerBox.Scene.Objects;

public partial class ScriptingTest
{
public ScriptingTest()
{
InitializeComponent();

private void Buttonl_Click(object sender, EventArgs e)

~ Emor st

@ 0tmons @ Refresn

From the script editor the author may enter the code to be executed when the button is clicked
see the sample below.

Sample Usage:

private void Buttonl_Click(object sender, EventArgs e)

{
// Add your code here

The keyframe triggers are available from the designer editor for all graphic objects.

127 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

B9 ChamneoanPrime Scen st - crptn Testps
Fio Gt Vieu Window Toos Hep

B

His is a test

To add a new keyframe that can be bound to a trigger you first move the timeline tracking icon

W\ to the time offset you want the keyframe added then click the add icon % These icons
are highlighted below.

Actions x

Default ' Add Action v

Action ‘ Triggered By (0).. [‘ Keyframe |Keyframe1 ~ Du:uo:m.uu:@q Zoom 2] o
Lot vl bocc oo benneo oo tooo becnceeo oo bco becocieeo st b e boocc e Doccncoc bocc e bocccon Lot booconcoo oo Lo

Animation 0:00 2:00 200 2:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 12:00

Tet 1 >

You also can right click in the area below the timeline to bring up the context menu and select
Add Keyframe option.

Actions

Default 1 Add Action

Action Triggered By (0) ... D ‘ « Keyframe | (Cursor)
P I I A I T T

Animation 0:00 1:00 2:00 3:00 400 5:00 6:00
Text 1 ¢

4, Add Keyframe

Delete Keyframe

Right Click In Here -—-» Cut Keyframe
Copy Keyframe

Paste Keyframe

Keyframe Triggers ...

128 | PRIME 4.10.10 API and Scripting User Guide

Chyron

Once the keyframe has been added you will see over in the properties section below the ability
to bind this keyframe to a trigger by clicking the Triggers drop down button.

Keyframe

Name |Keyframe 1 Frame | 00:00:01.00

Triggers

-

~ Properties

Mame Value In Out

The drop down will display all the events that the keyframe can trigger. We are interested in the
Scripting option were KeyFrame1_Trigger can be checked or unchecked.

Offset | + 00:00:00.00 (5

=) li_.'b Actions
¢« [Defaukt
Keyframe ' Q Clip 1

=) .:t‘ Scripting

Name [Keyframel_Trigger
= @ External

Triggers i [] External Action Name

~ Propertie
Mame

129 | PRIME 4.10.10 API and Scripting User Guide

Chyron.

Checking off the KeyFrame1_Trigger selection will automatically add the
KeyFrame1_Trigger() event handler method into the scripting code.

B ChanneiEos Prime Scene Editer - Sciipting Testobx

file |1 PowerBox.Scripting.ScriptingTest

3
? namespace PowerBox.Scripting
Teolbe| r

1

Gragt using System;
e using System.Collections.Generic;
da using System.Drawing;
= using System.Windows.Forms;
& M using Chyron.PowerBox.Scene.Objects;
fttect
am Ay public partial class ScriptingTest
| M
W Lig public ScriptingTest()

W

{

BT InitializeComponent();
B 7e) 3}

Resou °
@0 private void Keyframel_Trigger(IKeyframe keyframe)
Scene. {
@ on

-

s x
HEGO
[Flayout

e DataObject
cture

~ Ermor List

From the script editor the author may enter the code to be executed when the keyframe is

triggered see the sample below.
Sample Usage:

private void Keyframel_Trigger(IKeyframe keyframe)

{
}

// Add your code here

130 | PRIME 4.10.10 API and Scripting User Guide

Chyron.

There are two types of C# scripting available in PRIME. Application scripting is a single C#
script that has an application wide scope. Scene scripting has a scope of the scene. Each
scene can have its own C# script, but there is only one application script. Both scripts share
many design attributes with only a few minor differences, which will be discussed.

Scripting Editor

The C# scripting editor for the scene is available through the designer by clicking the

= | Scripti
-_] P9 4oolbar button, which will display the C# scripting editor shown below.

5 ChannelBox Prime Scene Editor - New Scene 1pbx

Fle Edt View Window Tools Help

[Proiect [PowerBox
Toolbox
Graphics
ATt
cip
 Grovp
@ Model
ifects
= Auto Follow
B Mask
Q Light
Warp
B Tansiion
G Text pit
8 0xa
& Ao
3 Message

O Timer

Scene Tree

& image
9 Video Input

D cube

T crop
% Matersl

£ Render Texture

Page Tum
4 Crawl

G Character

= script

T Ancilary Data

<+ BXF

x

| Propeties Events

InitializeConponent();

Actions

Default %, Add Action

131 | PRIME 4.10.10 API and Scripting User Guide

= [Seripting
 References

5 Add Reference B Remove

Enterprise DataObject
cture

x
HEGO
[Pyt

 ErorList

@ 0Eror: @ Refresh

Chyron.

The Editor pane is what the scene author will be working in while writing the C# script. Upon
startup for the first time the pane will contain the default code template (see below) for creating
the C# script.

Default Scene Scripting Code Template (Scene Name: NewScene)

namespace PowerBox.Scripting
{
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Windows.Forms;
using Chyron.PowerBox.Scene.Objects;

public partial class NewScenel

{
public NewScenel()

{
}

InitializeComponent();

To the right of the scripting panel is the properties for the script, which shows the assembly
references and error list for the code indicting syntax errors.

132 | PRIME 4.10.10 API and Scripting User Guide

Chyron

The References pane lists all the assembly references used in the script. There will be the
standard Microsoft.NET assemblies as well as PRIME assemblies. The scene author can

remove references from the list by selecting them and clicking the & Remove pytton from the

references toolbar. To add new references, the scene author can click the " #dd Reference

button on the references toolbar, which will launch the Reference Manager.

% Reference Manager - O *

e Bl ‘SEar-:h | [] Filter Selected Refresh

Component Name Version Runtirme

System 4.0.0.0 +4,0.30319
System.Core 4,000 v4,0.30319
System.Drawing 4.0.00 v4,0.30319
System.Windows.Forms 4.0.00 v4,0.30319
Systern.Xml 4.0.00 v4.0.30318

Files

o [Com]

The Assemblies option, which is the default selection and will display all system wide
Microsoft. NET assemblies installed on the system. Any assembly that has already been added
to you script will appear with a check and any assembly that can be added will appear
unchecked. Checking any unchecked entry will add the reference to your C# script and allow
access to any classes available in the selected assembly. Unchecking any assembly will result
in that assembly being removed from your script and removing access to any classes available
from that assembly. Any assemblies added and/or removed through Reference Manager will be
reflected in the References pane of the C# scripting editor and will be visible when the manager
is closed.

133 | PRIME 4.10.10 API and Scripting User Guide
P Chyron

The File option if selected will display all the PRIME assemblies, as well as any additional
assemblies that the user may have loaded. The first time the user will only see the pre-selected
PRIME assemblies based on the default code template. To add new assemblies that do not
already appear on the list you can click the Browse ... button to launch the standard Windows
file browse dialog. Any newly added assemblies from the file browser will be automatically
checked and added to the scripts reference list. Unchecking any assembly will result in that
assembly being removed from your script and removing access to any classes available from
that assembly. Any assemblies that are displayed in red text will indicate that the assembly dll

cannot be found.

% Reference Manager

Assemblies
Files

Browse ...

|Seerch

| [Filter Selected Refresh

- O X

Component Name

Version

Path

Chyron.Enterprise.DataObject 3.003 ENTFS\PowerE...
Chyron.Enterprise.Infrastructure 1.1.04 ENTFS\PowerE...
Chyron.Enterprise.Logging 1.0.0.1 ENTFS\PowerE...
[] Chyren.Framework.Application 1.0.0.0 ENTFS\PowerE...
Chyron.PowerBox.Engine 1.0.0.0 ENTFS\PowerE...
Chyron.PowerBox.Playout 1.0.0.0 EANTFS\PowerB...
Chyron.PowerBox.Scene 1.0.0.0 ENTFS\PowerE...
o

134 | PRIME 4.10.10 API and Scripting User Guide

Chyron

The Error List pane will display any errors that are detected in the script file. Some errors may
occur when the script editor is loaded such as assembly loading errors. These errors indicate
that the assembly referenced in the editor could not be loaded for some reason. By clicking on

the &2 Refresh putton on the toolbar the system will attempt to load the references, check the
syntax of the C# script display any errors in the Error List and indicate the number of errors

x 2 Errors

[canvas ‘% Control Panel || Scripting

[# PowerBoxscripting Newscenel | [# Newscenerg

namespace PowerBox.Scripting

public partial class NewScenel
1

public NewScenel()

{

InitializeComponent();

var missingSemiColon = @ <--Line 15 ; expected
}

private void TextMe()

{

MethodDoesNotExist(); | <-The name 'MethodDoesNotExits' does not exist in the current context

<

Actions
Default %, Add Action

Action Triggered By (0) .. B Keyframe [(Curso) | 02:00:00.00 2

v | | 1 | ol
0:00 1:00 2:00 3:00 400 5:00 6:00 7:00 8:00 9:00 10:00 11:00

1 | | U
1500 1600 17:00 18:00

[Prayout
~ CE
£ Reset
® System.Xeml
~ Eror List

B 2erors (@ Refresh

3 Line 15 ; expected

@ Line 21 The name ‘MethodDoesNotEist’ does not est in

the current ¢

x
Default v
Zoom 2 L S

From the errors shown above, it indicates that a “; is expected” on line 15 in the C# script and
that MethodDoesNotEXxist() does not exist in the context. The scene author can double click on
the error and it will put the cursor at the beginning of the script line that caused the error.

135 | PRIME 4.10.10 API and Scripting User Guide

Chyron

Scripting Properties

ChannelBox

Iili'

15ceneDbject

Contral Panel Objects

Canves Objects

Resource Objects

i!“i'i'i‘i‘lmnmn

T

- | S Cass Hismahy

Sow ContrelPand Hierardy

136 | PRIME 4.10.10 API and Scripting User Guide

Chyron.

Text File Reader

Scene allows the user to select a file to be read in line by line and displayed on the Canvas

using a graphic Text object. Action is added to have a fade in and fade out effect.

Object

Name

Description

Text

MyTextObject Used to display

text from the
file.

Object

Name

Description

Button

StartButto
n

Used to start and stop
the file reading.
Events

Click
StartButton_Click

FilePic
ker

TextFilePic
ker

Used to select file from
the file system.

Events

FileChanged
TextFilePicker_FileCha
nged

TextBo

LineTextB
ox

Used to display the
text that is being
displayed in Canvas.
Binding
LineTextObject.Text

Action

FadeActio
n

Used to have the text
fade in and fade out.
Trigger
LineTextObject.TextCh
anged

137 | PRIME 4.10.10 API and Scripting User Guide

Chyron

To get the file to be read each time the action is done using a Timer object by setting the interval
to the FadeAction’s length in milliseconds. The timer is then set to AutoReset so that after an
Elapsed event is triggered it will restart automatically. We register the OnTimerElapsed() event
handler to the timers Elapsed event but we don'’t start the timer yet. The file to be read is
selected by using the FilePicker control on the control panel. Once a valid file is selected,
clicking button will open a file stream for reading, read the first line, start the timer and change
the buttons text to “Stop”. Clicking the button when is read “Stop” will stop the timer, close the
file and change the buttons text back to “Start”.

namespace PowerBox.Scripting
{
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Windows.Forms;
using Chyron.PowerBox.Scene.Objects;
using Chyron.Enterprise.Infrastructure.Parameters;
using System.IO;
using System.Timers;

public partial class TextFileReader

{

private string filePath;
private System.Timers.Timer timer;
private StreamReader reader;

public TextFileReader()
{

InitializeComponent();
StartButton.Enabled = false;

timer = new System.Timers.Timer((double)(Actionl.Length.Seconds*1000));
timer.AutoReset = true;

timer.Elapsed += OnTimerElapsed;

}

// Handles the Elapsed event from the timer
private void OnTimerElapsed(object sender, ElapsedEventArgs e)

{
ReadNextLine();

}

//Handles the FileChanged event from the FilePicker
private void TextFilePicker_FileChanged()

{
TextFilePicker.ForeColor = Color.Black;
filePath = TextFilePicker.File;

StartButton.Enabled = (!string.IsNullOrWhiteSpace(filePath) &&
File.Exists(filePath));

138 | PRIME 4.10.10 API and Scripting User Guide
P Chyron

// Reads the next line from the file and updates the LineTextObject's Text property
private void ReadNextLine()

{

if (reader != null)

if (! reader.EndOfStream)
{

var line = reader.ReadlLine();

LineTextObject.Text = line;

}
}
}

// Handles the Click event for the StartButton
private void StartButton_Click(object sender, EventArgs e)

{

if (StartButton.Text == "Start")
{

if (File.Exists(filePath))
{

try
{

}

catch (Exception ex)

{

reader = new StreamReader(new FileStream(filePath, FileMode.Open));

TextFilePicker.ForeColor = Color.Red;
this.Scene.LogError(ex.Message);
return;

}

ReadNextLine();
timer.Start();

StartButton.Text = "Stop";
}

else

{
timer.Stop();

if (reader != null)

{

reader.Close();
reader = null;

}

StartButton.Text = "Start";

139 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

}
}
}

Side Show

Scene allows the user to select a file that contains a list of images or a directory that contains
images to be read one at a time and display the image on the canvas. A fade in / fade out action
on the Canvas using a graphic Text object. Action is added to have a fade in and fade out effect.

Object | Name Description

Image Slidelmage Used to
display the
image on the
canvas.

Text SlidelmageName Used to
display the
image name
on the
canvas.

Objec | Name Description

t

Butto | ButtonSlide | Used to start and stop

n Show the slide show.

Events

Click
ButtonSlideShow_Clic
k

TextB | ImageFileTe | Use to display the

0X xtBox image filename.

TextB | ImageFolde | Used to enter or

ox rTextBox display the folder to

search for images.
Events

TextChanged
ImageFolderTextBox_
TextChanged

FilePic | ImagelListFil | Used to select the file

ker ePicker containing a list of

images to be used,
Events

140 | PRIME 4.10.10 API and Scripting User Guide

Chyron

FileChanged
ImagelistFilePicker_Fi

leChanged
Butto | BrowserBut | Used to launch the
n ton folder browser to

select the directory to
search for images.
Events

Click
BrowserButton_Click

Actio | FadeAction Used to have the

n image fade in and
fade out.
Trigger
Slidelmage.FileChang
ed

Param | ButtonStart | Contains the text to

eter Text be displayed on the

ButtonSlideShow to
indicate it will Star the

slide show.
Param | ButtonStop | Contains the text to
eter Text be displayed on the

ButtonSlideShow to
indicate that it will
Stop the slide show.

Param | ImageExten | Contains a commas
eter sions delimited list of valid
image file extensions.

This script uses some advance features such as threading to perform the actions required. The
image list is created as a stack so that it is processed only once as each item is popped off and
displayed. The list is created when the StartButton is clicked and the Tag property is equal to
SlideShowOptions.Start enumeration value. The control panel’s controls that are used by the
slide show process are disabled so that entries cannot be changed while the list is being
processed. The image list is either generated using the image text file, which contains a list of
images and their paths or a directory that contains images. A separate thread is started to
perform the read so that other actions can be done without interruption. When the list of images
has been exhausted the control panels state is set back so that a new slide show can be
performed. At any point, while the image list is being processed the StartButton may be clicked
to Stop and reset the control panel back.

namespace PowerBox.Scripting

{

141 | PRIME 4.10.10 API and Scripting User Guide
Chyron

using
using
using
using
using
using
using
using
using

System;
System.Collections.Generic;
System.Drawing;
System.Windows.Forms;
Chyron.PowerBox.Scene.0Objects;
Chyron.PowerBox.Scene.Controls;
Chyron.PowerBox.Scene.Text;
System.Ling;

System.IO;

public partial class SlideShow

{

private enum SlideShowOptions

{

1

Start,
Stop

private bool allfiles = false;
private string filePath;

private bool cancel = false;

private Stack<string> imagelList = new Stack<string>();

private string startText = "Start Slide Show";

private string stopText = "Stop Slide Show";

private string [] extensions = new string [0];

private System.Windows.Forms.FolderBrowserDialog folderBrowser =

new System.Windows.Forms.FolderBrowserDialog();

public SlideShow()

{

}

InitializeComponent();
ButtonSlideShow.Enabled = false;

InitializeScript();

// initialize the script
private void InitializeScript()

{

var parameter = Scene.Parameters.Find("ButtonStartText");
if (parameter != null)
{

startText = parameter.Value as string;

}

parameter = Scene.Parameters.Find("ButtonStopText");
if (parameter != null)

{
}

stopText = parameter.Value as string;

extensions = ImageExtensions.Value.ToLower().Split(new char[] { '," });

142 | PRIME 4.10.10 API and Scripting User Guide

Chyron.

allfiles = extensions.Contains("*") || extensions.Contains("*.*");
ButtonSlideShow.Text = startText;
ButtonSlideShow.Tag = SlideShowOptions.Start;

nu o,
3

ImageFileTextBox.Text =

Scripting.File = 5
Scripting.Opacity = 0;

}

// Creates the image list from either the directory or the image list file
private void CreateImageList()

{

imagelList.Clear();

BrowseButton.Enabled = f
ImageFileTextBox.Text = "Creating Image List";

if (File.Exists(filePath))
{

using (StreamReader reader = new StreamReader(filePath))

while (!reader.EndOfStream)
{

var line = reader.ReadlLine();

AddImageFile(line);
¥

}
else if (Directory.Exists(filePath))

{

foreach (var file in Directory.GetFiles(filePath, "*.*"))

{
}

AddImageFile(file);

}
¥

// Add image file to the stack
private void AddImageFile(string file)

{

// image files extension
var extension = System.IO.Path.GetExtension(file);

// image file must exist and its extension must be allowed
if (File.Exists(file) && (allfiles ||
(lallfiles && extension.Contains(extension))))

{
}
}

// Enables the slide show
private void EnableSlideShow()

{

imagelList.Push(file);

143 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

// make sure we are executing on the GUI thread
if (this.InvokeRequired)

{
Invoke(new Action(EnableSlideShow));

}

else

{

wn,
)

SlideImageName.Text =
Scripting.Opacity = 0;

ImageFileTextBox.Text = H

ImageFileTextBox.Enabled = true;
BrowserButton.Enabled = true;
ImagelistFilePicker.Enabled = true;

ButtonSlideShow.Enabled = true;
ButtonSlideShow.Text = startText;
ButtonSlideShow.Tag = SlideShowOptions.Start;
ButtonSlideShow.BackColor = Color.LightSteelBlue;

Log("");

}

// Handle the button click event for the slide show
private void ButtonSlideShow_Click(object sender, EventArgs e)
{

var option = (SlideShowOptions)ButtonSlideShow.Tag;

if (option == SlideShowOptions.Start)
{

CreateImageList();

if (imagelist.Count > @)
{

cancel = false;

ButtonSlideShow.BackColor = Color.Red;

ImageFileTextBox.Enabled = false;
BrowserButton.Enabled = false;
ImagelListFilePicker.Enabled = false;

ButtonSlideShow.Text = stopText;
ButtonSlideShow.Tag = SlideShowOptions.Stop;

System.Threading.Tasks.Task.Factory.StartNew(()=>
{

144 | PRIME 4.10.10 API and Scripting User Guide

Chyron.

while (imagelList.Count > @ && !cancel)

{
var image = imagelList.Pop();
if (System.IO.File.Exists(image))

{

ImageFileTextBox.Text = image;

Scripting.File = image;

SlideImageName.Text =
System.IO0.Path.GetFileNameWithoutExtension(image);

}

System.Threading.Thread.Sleep(FadeAction.Length.TimeSpan);

}

if (cancel)

{
FadeAction.Stop();

Log("Slideshow cancelled");
}

else
Log("Slideshow done");

EnableSlideShow();

1)

}

else

{
ButtonSlideShow.BackColor = Color.Gray;

ButtonSlideShow.Enabled = false;
cancel = true;

}

// Handles the TextChanged event for the ImageFolderTextBox control
private void ImageFolderTextBox_TextChanged(object sender, EventArgs e)

{
if (Directory.Exists(ImageFolderTextBox.Text))

filePath = ImageFolderTextBox.Text;
ImageListFilePicker.File = "";
ButtonSlideShow.Enabled = true;

}
else
{
if (File.Exists(ImageListFilePicker.File))
{
ButtonSlideShow.Enabled = true;
¥
else

145 | PRIME 4.10.10 API and Scripting User Guide

Chyron.

ButtonSlideShow.Enabled = false;

filePath = "";
}

}

// Handles the Click event for the BrowseButton control
private void BrowserButton_Click(object sender, EventArgs e)
{
folderBrowser.Description = "Select Image Directory";
folderBrowser.ShowNewFolderButton = false;

if (folderBrowser.ShowDialog(this) == System.Windows.Forms.DialogResult.OK)
{
ImageFolderTextBox.Text = folderBrowser.SelectedPath;
}
}

// Handles the FileChanged event from the ImagelListFilePicker control
private void ImagelListFilePicker_FileChanged()

{
if (File.Exists(ImageListFilePicker.File))

filePath = ImagelListFilePicker.File;
ImageFolderTextBox.Text = "";
ButtonSlideShow.Enabled = true;

}
else
{
if (Directory.Exists(ImageFolderTextBox.Text))
{
ButtonSlideShow.Enabled = true;
}
else
{
ButtonSlideShow.Enabled = false;
filePath = "";
)i
}

146 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

PRIME also includes support for VBScript and JScript. The common API can be utilized to
interact with and control the playback of scenes.

There is only one PRIME application instance running on a system at a time. The application
services each request through the API, providing the ability to retrieve and modify the state of
scenes within the currently selected project.

The Scene is the basic PRIME structure, containing multiple graphical and hardware elements
called Objects as well as Controls that define an interface to configurable aspects of the
scene. Scenes also contain one or more Actions, which define object animations, and may be
triggered through the scripting API. Currently the actions do not expose their underlying
keyframes and associated properties, though this may be added in future revisions of the API.

Each scene also has a collection of customizable User Parameters, which allows scripts to
store and retrieve context information at runtime.

Scripts associated with a scene at design time are executed in-process. In-process scripts are
provided context and a handle on the PRIME COM API in the form of global keywords that are
accessible from the script (see Global Keywords).

When PRIME is running with administrator privileges, scripts may also be executed out of
process (e.g. by double-clicking a VBS file on the Windows desktop or from a VBScript editor),
although these scripts must tap into the PRIME COM API differently since they have no local
context:

Future revisions of scripting may include a DCOM implementation so that scripts will have
access to the PRIME API from any COM environment even if the PRIME application has not
been started.

The user may incorporate scripts using VBScript or JScript by adding a Script resource to their
scene. The resource can be added by clicking the Script button in the Designer Toolbox as seen
below:

147 | PRIME 4.10.10 API and Scripting User Guide
Chyron

Resources

[j,l Data l@ Timer

& Audio __l Script

EU Ancillary Data =l Message
] BXF [@] Clip Player

Once added, the Script resource may be customized in a variety of ways, but the most important
configuration decision is deciding how script execution will occur. The Mode property dictates
whether scripts will execute when keyframes animate or in response to designated scene
events.

Script resources default to Timeline mode, indicating that the object will execute the selected file
at designated keyframes on the timeline. Each of the other properties listed are keyframeable;
consequently, a single Script resource may be used to execute multiple script files: each
keyframe will a different file property affected.

Properties | Events
= Scriptl P
4 Script
Mode | Timeline |
File -
Synchrenization |5}rnchrnnnus 'v|
Context |Ir1 Process 'v|
Timeout 10.00 U

e File: The VBScript or JScript file that will be executed. Browsing for a file will initially
suggest files local to the current project, but the user may opt to select a completely
external file.

e Synchronization: This property specifies whether the script will be executed
synchronously or asynchronously. Synchronous script execution can impede the
execution of other scripts however this may be preferable and is the default behavior.
Asynchronous script executions may occur concurrently.

e Context: Indicates whether the script will be executed /n Process (with context of the
executing scene) or Out of Process (no context). Generally, scripts that will interact with

148 | PRIME 4.10.10 API and Scripting User Guide

Chyron

the PRIME API should be executed In Process. Scripts that don’t require the PRIME
API, such as those that download data on some interval should be executed Out of
Process.

e Timeout: Indicates how long a script should allow for execution before timing out (and
forcibly terminated). This property is used to prevent long-running scripts from interfering
with playout operation or performance.

Scripts in this mode may also be triggered in the standard PRIME trigger list control as typically
seen when configuring object or scene events. For example, a button control can be added and
configured to execute a Script resource as seen below.

Properties | Events
Button 1 El

4 Appearance

Text Buttonl

Font Segoe UL 9.00 - N

4 Click

a Ii:} Actions
' [7] Default
4 |=| Scriptl
[] Execute
4 |2:] Conditions
4 |=| Scripting
[[] Buttonl_Click
4 EE' External
[] External Action Mame

This would execute the script file as configured on the default keyframe of the resource.

Alternatively, the Mode property can be changed to Event Driven. Additional properties become
available when this value is set.

149 | PRIME 4.10.10 API and Scripting User Guide
Ping Chyron

[= Scrptl P
4 Script
Mode | Event Driven |
Start Event ’NE"-"EF v]
[] Interval 5.00 U
File -
Synchronization IS}fnchronous v]
Context ’In Process v]
Timeout 10.00 U

e Start Event: Indicates the type of event that will cause the script to execute.

Never: Script execution is disabled.

After Close: The script will execute after the scene is closed.

After Load: The script will execute after the scene is loaded.

After Play: The script will execute after the scene is taken to air.

After Stop: The script will execute after the scene is transferred off air.

After Update: The script will execute after a specific property of a particular object
has changed.

O O O O O O

4 Script
Mode | Event Driven |
Start Event | After Update -]
Target ' Textl -
Property ’Text ,]
T os0 UJ

o Before Close: The script will execute before the scene is closed.
o Before Play: The script will execute before the scene is taken to air.

150 | PRIME 4.10.10 API and Scripting User Guide
P Chyron

o Before Stop: The script will execute before the scene is transferred off air.

o Before Update: The script will execute before a specific property of a particular
object has changed. The executing script may change the value prior to its
application.

o While Playing: The script will execute only when the scene is on air.

e Interval: If enabled, specifies that the script should execute repeatedly on a defined
interval (in seconds). For example, the user could configure a script that executes every
five seconds while on air by setting the Start Event to While Playing and the checking
the Interval property.

151 | PRIME 4.10.10 API and Scripting User Guide
P Chyron

Prime

Parameters

Parameter

Scene

Button
CheckBox
ComboBox
FilePicker
RadioButton
RichTextEditor
Numeric Up Down
TextBox

TimeCodeEditor.

Parameters

Parameter

152 | PRIME 4.10.10 API and Scripting User Guide

Chyron.

Below are reserved keywords that may be used by an in-process script to reference the PRIME
API.

ActiveScene
Returns the scene currently executing the script.
Sample Usage:

ActiveScene.Play ' Play the current scene

Prime

Returns a top-level object that can be used to interact with the currently running PRIME. This
object is particularly useful for cross-scene scripting, meaning that a script in one scene can
affect the state of other scenes.

Sample Usage:

Dim scene
Set scene = Prime.Scene("1") ' Active scene might not be 1

scene.Play

Parameters

Returns a collection of script parameters that contains useful information about the script being
executed. Currently, only four parameters are possible: Control Name, Control Value, Id and
Script Name.

Whenever a script is executed from PRIME, the script is provided with a collection of
parameters that may be of use to the executing script. Under most situations, this is currently
limited to the identifier of the scene (/d) that caused execution of the script as well as the name
associated with the executing script (Script Name), however, when a script executes as a result
of an update to a control panel control, two additional parameters are made available.

Example Available When?
VBScript

Usage

Parameter.ltem(Always Yes
llldll)
Parameter.ltem(Before, After Update Yes

"Control Name")

153 | PRIME 4.10.10 API and Scripting User Guide
pine Chyron.

Parameter.ltem(Before, After Update No
"Control Value")

Parameter.ltem(Always Yes
"Script Name")

It may be desirable to execute a script that can transform an incoming data value before
applying the value to a control panel control. This can be accomplished by adding a Script
resource to the scene in Event Driven mode, marking the Execute Script property Before
Update and setting the Target property to the desired control. At this point, the script will
execute immediately before a value is applied to the target control, allowing the script author to
intercept the value and make any desired modifications.

Modifying the incoming value requires that the Control Value parameter is used. Simply set the
value of the Script Parameter as seen below:

In the example above, New Value will be applied to the control after the script completes
executing instead of the original value.

154 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

API| Reference
Prime

The global keyword Prime returns an application proxy, which provides hooks into the PRIME
API. This is the top level object that allows a script author to interact with scenes in the currently
selected project.

AllScenes
Returns a collection of all scenes in the currently selected project.

Sample Usage:

Dim scene
' Iterate through each scene
For i = @ to Prime.AllScenes.Count - 1
' Here we can do something with each scene.
Set scene = Prime.AllScenes.Item(i)
' For example, show a message box with the scene ID.
MsgBox scene.Sceneld
Next

OpenScenes
Returns a collection of all scenes that are currently open in the selected project.

Sample Usage:

Dim scene
' Iterate through each open scene
For i = @ to Prime.OpenScenes.Count - 1
' Here we can do something with each scene.
Set scene = Prime.OpenScenes.Item(i)
' For example, show a message box with the scene ID.
MsgBox scene.Sceneld
Next

Parameters

Returns a collection of project parameters which are thus independent of scenes. Currently only
two parameters are available by default:

Parameter Example VBScript Usage Value?
Name

Command text of the

Last Automation Prime.Parameter.ltem("Last Automation Command Text") most rgcently received
Intelligent Interface

command.

Command Text

155 | PRIME 4.10.10 API and Scripting User Guide
pine Chyron.

The date/time when the
Prime.Parameter.ltem("Last Automation Command Time") last Intelligent Interface
command was received.

Last Automation

Command Time

For additional details on using the parameter collection, see the Parameters section.

Returns a scene with the specified name, if one can be found. If the scene exists in the project,
then that scene will be returned. If a matching scene cannot be found, then Nothing is
returned.

Sample Usage:

' Check if the scene was returned

Returns true if a scene with the specified name exists in the current PRIME project. Otherwise,
returns false.

Sample Usage:

SceneCollection

A collection of scenes returned by either Prime.AllScenes or Prime.OpenScenes.

The number of scenes in the collection.

Sample Usage:

' Display the number of open scenes

156 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

Returns a scene at the specified index in the collection.

Sample Usage:

' Iterate through each scene

Here we can do something with each scene.

' For example, show a message box with the scene ID.

Closes all scenes in the scene collection.

Sample Usage:

Stops all scenes in the scene collection.

Sample Usage:

157 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

Scene

Although scripting in PRIME can be used without involving the PRIME API, perhaps the most
powerful use of the feature is for interacting with scenes in the project. Use of the PRIME API
allows a script author the ability to affect the state of scenes, store and retrieve context
information for later use by other scenes or scripts, and a plethora of other features.

Scenes may be referenced by the script author in one of two ways.

1. The global ActiveScene keyword returns the scene that is currently executing the script.
This keyword may be used anywhere in the script.

' Play the current scene
2. The global Prime keyword can be used to access any scene in the Prime database.

' Play scene with ID 1

Closes the scene, if the scene is not already closed.

Sample Usage:

Returns a control panel control with the specified name, if the scene’s control panel contains
one. If a matching control cannot be found, then Nothing is returned. An exception will be
thrown if this property is accessed before the scene has been opened.

Sample Usage:

' Check if the control was returned

158 | PRIME 4.10.10 API and Scripting User Guide
Chyron

Returns a collection of all control panel controls found in the specified scene. An exception will
be thrown if this property is accessed before the scene has been opened.

Sample Usage:

' Iterate through each control in the control panel
' Here we can do something with each control.

' For example, show a message box with the control name.

Loads the scene regardless of its state.

Sample Usage:

Returns for an object with the specified name, if the scene contains one. If a matching object
cannot be found, then Nothing is returned. An exception will be thrown if this property is
accessed before the scene has been opened.

Sample Usage:

' Check if the object was returned

159 | PRIME 4.10.10 API and Scripting User Guide
e Chyron

Returns an enumeration of all objects in the specified scene. An exception will be thrown if this
property is accessed before the scene has been opened.

Sample Usage:

' Iterate through each object in the scene
' Here we can do something with each object.

' For example, show a message box with the object name.

Opens the scene, re-opening the scene if it is already open.

Sample Usage:

Returns a collection of user parameters currently associated with the scene. For additional
details on working with parameters, see the Parameters section.

Plays the scene regardless of its state. If the scene is already playing, the scene will first be
stopped and then replayed.

Sample Usage:

160 | PRIME 4.10.10 API and Scripting User Guide
P Chyron

Returns the name of this scene. Aliasing functionality previously available in Channel Box is no
longer supported.

Sample Usage:

Gets an integer indicating the current state of this scene.

2 if the scene is closed

4 if the scene is loaded

8 if the scene is loading currently
16 if the scene is opened

32 if the scene is playing

Sample Usage:

' Check if the scene is playing

' Playing, so stop the scene

' Not playing, so play the scene

Stops the scene, if it is playing.

Sample Usage:

Control

Each scene has a set of controls that are collectively referred to as the control panel. These
controls are exposed to scripting, providing specialized properties and functions pertinent to
each control type. All controls have two common properties, however, that can be used to

161 | PRIME 4.10.10 API and Scripting User Guide
P Chyron

identify the control and its supported functionality.

Returns the name of this control.

Sample Usage:

' Check if the control was returned

Gets an integer indicating the type of this control. Currently labels, group boxes, and video
proxies are unavailable through the API.

2 if the control is a button

3 if the control is a check box

4 if the control is a combo box

5 if the control is a file picker

10 if the control is a radio button

11 if the control is a rich text editor

12 if the control is a numeric up/down.
13 if the control is a text box

14 if the control is a time code editor

Sample Usage:

' Only display the names of TextBoxes

162 | PRIME 4.10.10 API and Scripting User Guide

Chyron

Button

The Button can be used to interact with a control panel button.

For state buttons, this property may be used to change or retrieve the current state of the
button. True values correspond to the button being on, while false indicates that the button is off.
For standard push buttons, this property may be used to simulate a button press by setting the
value to true. This property will always return false for push buttons and setting its value to false
should have no effect.

Sample Usage:

' Check if state button is pressed

' It is, so reset the button!

163 | PRIME 4.10.10 API and Scripting User Guide
P Chyron

CheckBox

The CheckBox can be used to interact with a control panel check box.

This property returns true if the check box is currently checked, otherwise false. The property
may also be used to set the state of the check box.

Sample Usage:

' Check if state check box is checked

' It is, so uncheck the checkbox!

ComboBox

The ComboBox can be used to interact with a control panel combo box.

Returns the number of items in the combo box drop down.

Sample Usage:

Returns an enumeration of the items in the combo box drop down. Each item corresponds to a
text string visible in the drop down.

Sample Usage:

164 | PRIME 4.10.10 API and Scripting User Guide
P Chyron

Gets or sets the text string of the item currently selected in the combo box. You may only set a
value using a text string that already exists in the combo box. All other updates to the selected

item will be ignored.

Sample Usage:

' Now change the selected item
' This update only works if Item 2 exists in the combo box

Each item in a combo box may have an underlying value associated with it; for example, a
combo box may display a shorter text string that may actually refer to a full file path. This
function may be used to retrieve the actual value when given the visible item value. If this
function is passed a text string that does not exist in the combo box, then Nothing is returned.

Sample Usage:

' Now display the actual value, which may be different

165 | PRIME 4.10.10 API and Scripting User Guide
Ping Chyron

FilePicker

The FilePicker can be used to interact with a control panel file picker.

Gets or sets the file path currently in the file picker control.

Sample Usage:

166 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

RadioButton

The RadioButton can be used to interact with a control panel radio button.

This property returns true if the radio button is currently selected, otherwise false. The property
may also be used to set the state of the radio button.

Sample Usage:

' Check if state radio button is selected

' It is, so reset the radiobutton!

167 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

RichTextEditor

The RichTextEditor can be used to interact with a control panel rich text editor.

Gets or sets the text currently in the rich text editor control.

Sample Usage:

168 | PRIME 4.10.10 API and Scripting User Guide
P Chyron.

Numeric Up/Down

The Spinner can be used to interact with a control panel numeric up/down.

Gets or sets the integer value currently in the numeric up/down control.

Sample Usage:

169 | PRIME 4.10.10 API and Scripting User Guide
Chyron.

TextBox

The TextBox can be used to interact with a control panel text box.

Gets or sets the text currently in the text box control.

Sample Usage:

170 | PRIME 4.10.10 API and Scripting User Guide

Chyron.

TimeCodeEditor

The TimeCodeEditor can be used to interact with a control panel time code editor.

Gets or sets the current value of the time code editor in the form “HH:MM:SS”.

Sample Usage:

Gets or sets the number of frames currently specified by the value currently in the time code
editor control. This value depends on the frame rate used by the scene.

Sample Usage:

171 | PRIME 4.10.10 API and Scripting User Guide

Chyron

Object

Each scene contains a collection of graphical and hardware elements called Objects, such as
crawls and images, which are exposed to scripting using the Objects enumeration or Object
function of a scene. Currently only object names are exposed, although additional functionality
may be added in the future.

Returns the name of this object.

Sample Usage:

' Should display Text

172 | PRIME 4.10.10 API and Scripting User Guide

Chyron

Action

The Action can be used to interact with an animation of a scene. Actions can be accessed and
used to trigger their underlying actions as follows:

Sample Usage:

'Hide will be triggered

Returns the name of this action, as apparent in the Prime Scene Builder at design time.

Sample Usage:

' Hide

Triggers this action.

Sample Usage:

' Check if the action was returned

' Activate the animation

173 | PRIME 4.10.10 API and Scripting User Guide
ping Chyron.

Parameters

Scene authors can store and retrieve contextual information through the PRIME Scripting API
by using either the top level PRIME project parameter collection (available as prime.Parameters)
or the parameter collection of a particular scene (available either through Activescene.parameters
or Prime.Scene("1").Parameters). The difference between the two styles is that the PRIME
parameter collection persists as long as the application is running (or until the current project is
changed), whereas the parameter collection of each scene is only persisted for as long as the
scene is open. Once the scene is closed, all changes to the parameter collection are NOT
persisted and upon reopening the scene, the parameters will have reverted to their initial state.
The initial state of a scene parameter collection can be configured during the scene authoring
process in the PRIME Scene Designer.

Both scene and project parameter collections can be accessed via scripting, which can retrieve
or modify the values of existing parameters, add entirely new parameters or remove those that
already exist.

Item
Gets or sets the value of a parameter with the specified name.

Sample Usage:
' Display the current value of Name

' Change the value of Name

Returns an enumeration of all parameters in the specified scene. An exception will be thrown if
this property is accessed before the scene has been opened.

Sample Usage:

' Iterate through each parameter in the scene

174 | PRIME 4.10.10 API and Scripting User Guide
Ping Chyron

Contains

Returns true if the parameters collection contains a parameter with the specified name.

Sample Usage:

Remove

If the collection contains a parameter with the specified name, the parameter is removed.

Sample Usage:

Although PRIME supports the original Channel Box VBScript API, there is additional integration
with the C# API. In Process scripts now automatically have keywords defined for all objects
within the executing scene. Each object provides access to as much of the C# API as possible,
varying in levels of support from object type to object type. For example, accessing a Text Box
control within the scene no longer requires use of the ActiveScene keyword. Instead the Text
Box control may be accessed directly using its script friendly name:

' Supported, but no longer necessary!

' Dim textBox

' Set textBox = ActiveScene.Control("Text Box 1")
' textBox.Text = "ABC"

The script-friendly name for an object follows the pattern below:

e Spaces are removed (e.g. "Text Box 1" becomes "TextBox1")
e Underscores are added (e.g. "123" becomes "_123")

175 | PRIME 4.10.10 API and Scripting User Guide

Chyron

ABOUT US

Chyron is ushering in the next generation of storytelling in the digital age. Founded in 1966, the
company pioneered broadcast titling and graphics systems. With a strong foundation built on
over 50 years of innovation and efficiency, the name Chyron is synonymous with broadcast
graphics. Chyron continues that legacy as a global leader focused on customer-centric
broadcast solutions. Today, the company offers production professionals the industry’s most
comprehensive software portfolio for designing, sharing, and playing live graphics to air with
ease. Chyron products are increasingly deployed to empower OTA & OTT workflows and deliver
richer, more immersive experiences for audiences and sports fans in the arena, at home, or on
the go.

CONTACT SALES

EMEA - North America * Latin America * Asia/Pacific
+1.631.845.2000 - sales@chyron.com

Chyron.

	
	
	C# API
	Introduction
	Object Hierarchy
	SceneControl Object Hierarchy
	Scene Object Hierarchy
	Canvas Object Hierarchy
	ControlPanel Object Hierarchy

	
	Scripting Objects
	IScene​
	Properties
	Events
	PlayoutStateChanged
	ActionPlayed

	Methods
	FindObject
	​LogError
	LogException

	ISceneObject
	Properties
	Events
	PropertyChanged
	BeforePropertyChanged
	AfterPropertyChanged

	Methods
	Exists
	GetValue
	SetValue

	IDynamicObject
	Properties
	Events
	PropertyAnimated

	Methods
	FindAnimation
	GetAnimation
	IAnimation GetAnimation(string name)

	IAction
	Properties
	Events
	Methods
	Play
	Stop
	Reverse

	SceneActionList​
	Properties
	Methods
	Contains
	Find

	IAnimation
	Properties
	Methods
	Find
	GetFirstKeyframe
	GetLastKeyframe

	AnimationList
	Properties
	
	Methods
	Find
	Get

	IParameter
	Properties

	IParameterList
	Events
	Methods
	IParameter Find(string name)
	IParameter Set(string name, object value)
	IParameter Add(object value)
	void Remove(IParameter parameter)

	SceneControl
	Properties
	Events
	BeforeLoad
	AfterLoad
	AfterPlay
	BeforeStop
	AfterStop

	Methods
	Invoke

	FrameRate
	Properties

	Resolution
	Properties

	Workflow Logger
	Workflow Configuration Settings
	Workflow Monitor

	Control Panel Objects
	Button
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	Click​

	Label
	Properties

	TextBox
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged

	ComboBox
	Properties
	​Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	SelectedIndexChanged​

	
	CheckBox
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	CheckedChanged

	RadioButton
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	CheckedChanged

	NumericUpDown
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged

	TrackBar
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged

	ListView
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	SelectedIndexChanged​

	FilePicker
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	FileChanged

	AssetBrowser
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	FileChanged

	PictureBox
	Properties

	TimeCodeEditor
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	FramesChanged

	Canvas Objects
	Text
	Properties
	
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	PropertyAnimated
	TextChanged​

	Image
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	PropertyAnimated
	ImageChanged

	Clip
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	PropertyAnimated
	Finished

	Cube
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	PropertyAnimated

	Model
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	PropertyAnimated
	FileChanged

	Effects
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	PropertyAnimated

	Crop
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	PropertyAnimated

	Mask
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	PropertyAnimated

	Material
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	PropertyAnimated

	Light
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	PropertyAnimated

	Render Texture
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	PropertyAnimated

	Warp
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	PropertyAnimated

	Page Turn
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	PropertyAnimated

	Transition
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	PropertyAnimated

	Crawl
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	PropertyAnimated

	Character
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	PropertyAnimated

	Usage
	Canvas Objects
	Graphics
	Text
	Clip
	Image

	Effects
	Warp
	Transition
	Transition before Update Events
	Transition after Update Events

	Crawl
	Start of Line Event
	End of Line Event
	End of File Event
	End of Data Event

	Resources
	Timer
	Timer Properties
	Timer Events

	Button Events
	Toolbox

	Keyframe Trigger

	Interface
	Scripting Editor
	Scene Scripting
	Scripting Properties
	References
	Assemblies
	Files

	Error List

	Scripting Properties

	Appendix
	Text File Reader
	Canvas
	Control Panel
	Script

	Side Show
	Canvas
	Control Panel
	​Script

	VB-JSCRIPT
	The Model
	Script Execution and Context
	​Scene Designer
	Object Hierarchy
	Global Keywords
	ActiveScene
	Prime
	Parameters

	API Reference
	Prime
	AllScenes
	OpenScenes
	Parameters
	Scene(id As String)
	SceneExists(id As String)

	SceneCollection
	Count
	Item(index)
	CloseAll
	StopAll

	Scene
	Close
	Control(name)
	Controls
	Load
	Object(name As String)
	Objects
	Open
	Parameters
	Play​
	SceneId
	SceneState
	Stop

	Control
	Name
	Type

	Button
	Pressed

	CheckBox
	Checked

	ComboBox
	ItemCount
	Items
	SelectedItem
	GetItemValue(item)

	FilePicker
	Path

	RadioButton
	Selected

	RichTextEditor
	Text

	Numeric Up/Down
	Value

	TextBox
	Text

	TimeCodeEditor
	Duration
	Frames

	Object
	Name

	Action
	Name
	Trigger

	Parameters
	Item(name As String)
	Items
	Contains(name As String)
	Remove(name As String)

	PRIME C# API Interaction

