

Chyron PRIME API & Scripting User Guide • 4.10.11 • December 2025 • This document is
distributed by Chyron in online (electronic) form only, and is not available for purchase in​
printed form.

This document is protected under copyright law. An authorized licensee of Chyron PRIME API &
Scripting may reproduce this publication for the licensee’s own use in learning how to use the
software. This document may not be reproduced or distributed, in whole or in part, for
commercial purposes, such as selling copies of this document or providing support or
educational services to others.

Product specifications are subject to change without notice and this document does not
represent a commitment or guarantee on the part of Chyron and associated parties. This
product is subject to the terms and conditions of Chyron’s software license agreement. The
product may only be used in accordance with the license agreement.

Any third-party software mentioned, described or referenced in this guide is the property of its
respective owner. Instructions and descriptions of third-party software are for informational
purposes only, as related to Chyron products and does not imply ownership, authority or
guarantee of any kind by Chyron and associated parties.

This document is supplied as a guide for Chyron PRIME API & Scripting. Reasonable care has
been taken in preparing the information it contains. However, this document may contain
omissions, technical inaccuracies, or typographical errors. Chyron and associated companies
do not accept responsibility of any kind for customers’ losses due to the use of this document.
Product specifications are subject to change without notice.

Copyright © 2025 Chyron, ChyronHego Corp. and its licensors. All rights reserved.

2 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Table of Contents
C# API... 14

Introduction.. 14
Object Hierarchy.. 15

SceneControl Object Hierarchy... 15
Scene Object Hierarchy...16
Canvas Object Hierarchy...17
ControlPanel Object Hierarchy.. 17

Scripting Objects..19
IScene..19

Properties...19
Events.. 20

PlayoutStateChanged.. 21
ActionPlayed.. 21

Methods... 22
FindObject..23
LogError... 23
LogException... 24

ISceneObject... 24
Properties...25
Events.. 25

PropertyChanged...25
BeforePropertyChanged.. 25
AfterPropertyChanged... 26

Methods... 26
Exists..27
GetValue.. 27
SetValue...28

IDynamicObject..28
Properties...29
Events.. 29

PropertyAnimated.. 30
Methods... 30

FindAnimation.. 31
GetAnimation... 31
IAnimation GetAnimation(string name).. 31

IAction..32

3 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Properties...32
Events.. 32
Methods... 32

Play.. 33
Stop..33
Reverse..34

SceneActionList... 35
Properties...36
Methods... 36

Contains... 36
Find.. 37

IAnimation..37
Properties...37
Methods... 39

Find.. 40
GetFirstKeyframe... 40
GetLastKeyframe... 41

AnimationList... 42
Properties...42
Methods... 43

Find.. 43
Get... 44

IParameter... 44
Properties...44

IParameterList..44
Events.. 44
Methods... 46

IParameter Find(string name).. 46
IParameter Set(string name, object value)...46
IParameter Add(object value).. 46
void Remove(IParameter parameter)...47

SceneControl... 47
Properties...48
Events.. 49

BeforeLoad...49
AfterLoad..49
AfterPlay...50

4 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

BeforeStop... 51
AfterStop.. 52

Methods... 53
Invoke...54

FrameRate...54
Properties...55

Resolution..55
Properties...56

Workflow Logger.. 56
Workflow Configuration Settings..57
Workflow Monitor... 59

Control Panel Objects..59
Button...60

Properties...60
Events.. 60

BeforePropertyChanged.. 60
PropertyChanged...60
AfterPropertyChanged... 60
Click... 61

Label.. 61
Properties...61

TextBox.. 62
Properties...62
Events.. 62

BeforePropertyChanged.. 62
PropertyChanged...62
AfterPropertyChanged... 62

ComboBox... 63
Properties...64
Events.. 64

BeforePropertyChanged.. 64
PropertyChanged...64
AfterPropertyChanged... 64
SelectedIndexChanged..64

CheckBox...66
Properties...66
Events.. 66

5 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

BeforePropertyChanged.. 66
PropertyChanged...66
AfterPropertyChanged... 66
CheckedChanged.. 66

RadioButton... 67
Properties...68
Events.. 68

BeforePropertyChanged.. 68
PropertyChanged...68
AfterPropertyChanged... 68
CheckedChanged.. 68

NumericUpDown..69
Properties...70
Events.. 70

BeforePropertyChanged.. 70
PropertyChanged...70
AfterPropertyChanged... 70

TrackBar.. 71
Properties...72
Events.. 72

BeforePropertyChanged.. 72
PropertyChanged...72
AfterPropertyChanged... 72

ListView..73
Properties...74
Events.. 74

BeforePropertyChanged.. 74
PropertyChanged...74
AfterPropertyChanged... 74
SelectedIndexChanged..74

FilePicker... 75
Properties...76
Events.. 76

BeforePropertyChanged.. 76
PropertyChanged...76
AfterPropertyChanged... 76
FileChanged...76

6 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

AssetBrowser...77
Properties...78
Events.. 78

BeforePropertyChanged.. 78
PropertyChanged...78
AfterPropertyChanged... 78
FileChanged...78

PictureBox..79
Properties...80

TimeCodeEditor... 80
Properties...81
Events.. 81

BeforePropertyChanged.. 81
PropertyChanged...81
AfterPropertyChanged... 81
FramesChanged.. 81

Canvas Objects... 82
Text.. 83

Properties...83
Events.. 83

BeforePropertyChanged.. 83
PropertyChanged...83
AfterPropertyChanged... 83
PropertyAnimated.. 83
TextChanged.. 84

Image...84
Properties...85
Events.. 85

BeforePropertyChanged.. 85
PropertyChanged...85
AfterPropertyChanged... 85
PropertyAnimated.. 85
ImageChanged...85

Clip...85
Properties...86
Events.. 86

BeforePropertyChanged.. 86

7 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

PropertyChanged...86
AfterPropertyChanged... 86
PropertyAnimated.. 86
Finished..86

Cube.. 86
Properties...87
Events.. 87

BeforePropertyChanged.. 87
PropertyChanged...87
AfterPropertyChanged... 87
PropertyAnimated.. 87

Model... 87
Properties...88
Events.. 88

BeforePropertyChanged.. 88
PropertyChanged...88
AfterPropertyChanged... 88
PropertyAnimated.. 88
FileChanged...88

Effects.. 88
Properties...89
Events.. 89

BeforePropertyChanged.. 89
PropertyChanged...89
AfterPropertyChanged... 89
PropertyAnimated.. 89

Crop... 89
Properties...90
Events.. 90

BeforePropertyChanged.. 90
PropertyChanged...90
AfterPropertyChanged... 90
PropertyAnimated.. 90

Mask.. 90
Properties...91
Events.. 91

BeforePropertyChanged.. 91

8 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

PropertyChanged...91
AfterPropertyChanged... 91
PropertyAnimated.. 91

Material.. 91
Properties...92
Events.. 92

BeforePropertyChanged.. 92
PropertyChanged...92
AfterPropertyChanged... 92
PropertyAnimated.. 92

Light... 92
Properties...93
Events.. 93

BeforePropertyChanged.. 93
PropertyChanged...93
AfterPropertyChanged... 93
PropertyAnimated.. 93

Render Texture.. 93
Properties...94
Events.. 94

BeforePropertyChanged.. 94
PropertyChanged...94
AfterPropertyChanged... 94
PropertyAnimated.. 94

Warp.. 94
Properties...95
Events.. 95

BeforePropertyChanged.. 95
PropertyChanged...95
AfterPropertyChanged... 95
PropertyAnimated.. 95

Page Turn.. 95
Properties...96
Events.. 96

BeforePropertyChanged.. 96
PropertyChanged...96
AfterPropertyChanged... 96

9 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

PropertyAnimated.. 96
Transition... 96

Properties...97
Events.. 97

BeforePropertyChanged.. 97
PropertyChanged...97
AfterPropertyChanged... 97
PropertyAnimated.. 97

Crawl..97
Properties...98
Events.. 98

BeforePropertyChanged.. 98
PropertyChanged...98
AfterPropertyChanged... 98
PropertyAnimated.. 98

Character... 99
Properties...100
Events.. 100

BeforePropertyChanged.. 100
PropertyChanged...100
AfterPropertyChanged... 100
PropertyAnimated.. 100

Usage.. 100
Canvas Objects..101

Graphics...101
Text...102
Clip... 104
Image... 106

Effects.. 107
Warp...108
Transition... 109

Transition before Update Events.. 110
Transition after Update Events... 111

Crawl.. 112
Start of Line Event..113
End of Line Event... 114
End of File Event.. 116

10 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

End of Data Event.. 117
Resources.. 117

Timer.. 118
Timer Properties... 118
Timer Events.. 122

Button Events...126
Toolbox...126

Keyframe Trigger... 127
Interface...130

Scripting Editor...131
Scene Scripting..131
Scripting Properties..132

References...133
Assemblies...133
Files..134

Error List...134
Scripting Properties..135

Appendix..137
Text File Reader...137

Canvas...137
Control Panel... 137
Script..137

Side Show..140
Canvas...140
Control Panel... 140
Script..141

VB-Jscript...146
The Model..147
Script Execution and Context.. 147
Scene Designer... 147
Object Hierarchy.. 152
Global Keywords..153

ActiveScene...153
Prime..153
Parameters.. 153

API Reference... 154
Prime..155

11 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

AllScenes... 155
OpenScenes.. 155
Parameters.. 155
Scene(id As String).. 156
SceneExists(id As String).. 156

SceneCollection...156
Count... 156
Item(index)... 157
CloseAll..157
StopAll..157

Scene...157
Close..158
Control(name).. 158
Controls..159
Load... 159
Object(name As String)..159
Objects...160
Open.. 160
Parameters.. 160
Play.. 160
SceneId..160
SceneState.. 161
Stop..161

Control... 161
Name... 162
Type... 162

Button...163
Pressed..163

CheckBox...163
Checked...164

ComboBox... 164
ItemCount.. 164
Items.. 164
SelectedItem.. 165
GetItemValue(item).. 165

FilePicker... 165
Path..166

12 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

RadioButton... 166
Selected... 167

RichTextEditor..167
Text.. 168

Numeric Up/Down..168
Value.. 169

TextBox.. 169
Text.. 170

TimeCodeEditor... 170
Duration... 171
Frames...171

Object...171
Name... 172

Action...172
Name... 173
Trigger..173

Parameters.. 173
Item(name As String)... 174
Items.. 174
Contains(name As String)..175
Remove(name As String)...175

PRIME C# API Interaction... 175

13 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

C# API
Introduction

PRIME versions 4.0 and later introduced support for C# scripting, which includes the ability to
interact with and control the state of scenes, their actions and control panel controls through C#
scripts. This document will be describing the PRIME version and scripting interface.

There is only one PRIME application running on a system at a time. The application services
request through the API, providing the ability to retrieve and modify the state of scenes in the
local PRIME database.

The Scene is the basic PRIME structure, containing multiple graphical, hardware and control
elements called SceneObjects that define an interface to configurable aspects of the scene.
Scenes also contain one or more Actions, which define object animations, and may be
triggered through the scripting API. Each scene also has a collection of customizable User
Parameters, which allows scripts to store and retrieve context information at runtime.

PRIME uses the Microsoft C# compiler to provide support for C# scripting. Scripts associated
with a scene at design time are executed in-process. In-process scripts are provided context
and a handle on the PRIME API in the form of global keywords that are accessible from the
script. Other classes needed for more complex scripting are available through both
Microsoft.NET assemblies as well as PRIME assemblies.

As of PRIME 4.5, the underlying architecture of PRIME was upgraded from .NET Framework to
.NET6. Microsoft has changed the API in some cases and deprecated some functionalities.
Therefore any customer upgrading to PRIME 4.5 or higher using C# scripting will need to retest
their C# script and may need to make changes to their code if it directly makes calls to .NET
library methods in order to make it compatible with .NET 6.

14 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Object Hierarchy

SceneControl Object Hierarchy

15 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Scene Object Hierarchy

16 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Canvas Object Hierarchy

17 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

ControlPanel Object Hierarchy

18 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Scripting Objects

IScene​

The scene object is available through the main script object, which is a SceneControl. Each
scene contains a collection of graphical, hardware and control elements called ISceneObjects,
such as crawls, images and controls, which are exposed to scripting using the AllObjects
enumeration properties, as shown below.

Namespace:​ Chyron.PowerBox.Scene.Objects

Properties

Name Type Description
Name string Gets the scene name.
Resolution Resolution Gets or sets the resolution of the scene (see

Resolution section).
FrameRate FrameRate Gets or sets the frame rate of the scene (see

FrameRate section)
Description string Gets the scene description.
Closed bool Gets a flag indicating if the scene is closed.
Playing bool Gets a flag indicating if the scene is playing.
Stopped bool Gets a flag indicating of the scene is stopped.
PlayoutState PlayoutState The PlayoutState is an enumerated value that

indicates the current state of the scene. Below is a
list of valid values and what they mean.

Closed​ ​ Scene in not in preview of on air.
Loaded​Scene is in preview
Playing​Scene is on air.
Stopping​ Scene is being stopped (being
transferred from on air to preview)
Stopped​ Scene in in preview.

Status string Gets a descriptive status of the scene.
FilePath string Gets the file with full path of the scene.
Directory string Gets the directory of the scene.
ProjectDirectory string Gets the directory of the project the scene is

contained in.
AllObjects IEnumerable<ISceneObject> Get the list of all objects including graphics, control

panel, resources and effects that the scene
contains.

Actions SceneActionList Gets the list of Actions defined for this scene.
Canvas Canvas Gets the canvas object used for the display of

graphics and effects.
Scripting Scripting Gets the scripting object for this scene.

19 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

ControlPanel ControlPanel Gets the control panel object used in the display of
the control panel objects.

Resources SceneResources Gets the list of resources defined for this scene
such as DataObjects,

Parameters ParameterList Gets the list of parameters defined for the scene.
Expressions ExpressionList Gets the list of expressions defined for the scene.

20 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Events

PlayoutStateChanged

The event is triggered when the state of the scene changes.

Example:

public ScriptTest()
{
​ InitializeComponent();
​

// Hookup your handler to the scenes event
​ this.Scene.PlayoutStateChanged += OnPlayoutStateChanged;
​ ​ ​
}
​

// Handles the PlayoutStateChnaged event from the scene
private void OnPlayoutStatedChanged(IScene scene)
{
 switch (scene.PlayoutState)
 {
 case PlayoutState.Loaded:
​ // You code to handle the Loaded state
​ break;
 case PlayoutState.Playing:
​ // Your code to handle the Playing state
​ break;
 case PlayoutState.Closed:
​ // Your code to handle the Closed state
​ break;
 case PlayoutState.Stopped:
​ // Your code to handle the Stopped state.
​ break;
 }
}

21 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

ActionPlayed

The event is triggered when one of the scenes actions is played.

Example:

public ScriptTest()
{
​ InitializeComponent();
​

// Hookup your handler to the scenes event
​ this.Scene.ActionPlayed += OnActionPlayed;
​ ​ ​
}

// Handles the ActionPlayed event from the scene
private void OnActionPlayed(IAction action)
{
​ // Your code to handle the ActionPlayed event
}

22 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Methods

FindObject

Find the specified object by name from the list of objects the scene contains. This includes
graphical, control panel, resource and effect objects. If the object for the name specified was
not found, then null is returned so a check of the return value is necessary.

Syntax: ​
ISceneObject FindObject(string name)

Example:

// Attempt to find object “MyCrawl” in scene
var effect = Scene.FindObject("MyCrawl");
if (effect != null)
{
 ​ // Add you code here
}
else
{
​ Scene.LogError("MyCrawl not found")
}
​
LogError

Logs the specific string to the log file.

Syntax:​
void LogError(string error)

Example:​

This example tries to find and scene object called “MyObject” in the list. If the object is not found
the value returned is null and is checked so that a message can be logged.

// Attempt to find object “MyObject” in scene
var obj = Scene.FindObject("MyObject");
if (obj != null)
{
 ​ // Add you code here
}
else
{
​ Scene.LogError("MyObject not found")
}

23 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

LogException

Log the specified exception to the log file.

Syntax:​
void LogException(Exception exception)

Example:

The LogException() method is used in conjunction with try-catch construct seen below. You
wrap you code in a try catch block in case an exception is thrown so can log it as well as have
the ability to handle it gracefully.

private void MyMethod()
{
​ ​
 ​ try
 ​ {
​ ​ // Add your code here
​ }
​ catch (Exception ex)
​ {
​ ​ Scene.LogException(ex);
​ ​ ​ ​ ​
​ }
}

24 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

ISceneObject

The ISceneObject is the interface of all Control Panel, Canvas and Resource and Effect objects
in a scene. The ISceneObject allows a script author the ability to affect the state of any objects
that the scene contains. To access the ISceneObjects from a Scene you would use either
AllObjects property or the FindObject() method.

Namespace: Chyron.Framework.Scene.Objects

Properties

Name Type Description
Name string Gets the name of the scene object.
ScriptName string Gets the script name for the scene object.
Scene IScene Gets the scene the scene object is associated with.
Events EventList Gets the list of events associated with the scene object.
Parent ISceneObjectParent Gets the parent of the scene object.

Events

PropertyChanged

Event is triggered when one of the scene objects properties has changed.

Syntax:

void PropertyChanged(string property)

BeforePropertyChanged

Event is triggered prior to a property being changed allowing for the scene author to perform
some processing prior to a particular property on a scene object is performed. Notice that the
first parameter in the syntax identifies the ISceneObject that is triggering this event. This allows
the scene author to use the same event handler to handle multiple BeforePropertyChanged
events from different ISceneObject’s.

Syntax:

void BeforePropertyChanged(ISceneObject sceneObject, string property, object
value)

25 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

AfterPropertyChanged

Event is triggered after the property has been changed allowing for the scene author to perform
some processing after a particular property on a scene object is performed. Notice that the first
parameter in the syntax identifies the ISceneObject that is triggering this event. This allows the
scene author to use the same event handler to handle multiple AfterPropertyChanged events
from different ISceneObjects.

Syntax:

void AfterPropertyChanged(ISceneObject sceneObject, string property, object
value)
​

Example:

Register event handlers for the PropertyChanged, BeforePropertyChanged and
AfterPropertyChanged event so that the scene author can perform processing when these
events are triggered.

public ScriptTest()
{
​ InitializeComponent();
​ ​ ​
​ var textbox = this.Scene.FindObject("MyTextBox");

​ if (textbox != null)
​ {
​ ​ textbox.PropertyChanged += OnPropertyChanged;
​ ​ textbox.BeforePropertyChanged += OnBeforePropertyChanged;
​ ​ textbox.AfterPropertyChanged += OnAfterPropertyChanged;

​ }
​ ​ ​
​ ​
}
​

26 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Methods

Exists

Returns true of the property specified by type exists in the property list.

Syntax:

bool Exists(string property)

Example:

// Get the SAMPLE scene from the ChannelBox database
var scene = ChannelBox.GetScene("SAMPLE");
​
// Gets the object MyTextBox from the SAMPLE scene
var obj = scene.FindSceneObject("MyTextBox");
​ ​ ​
// Check if the MyTextBox has a Text property that has been set. If true
// then access the value otherwise ignore since we don’t want use
// the default value.
if (obj.Exists("Text"))
{
 // Get the Text property value
 var value = obj.GetValue("Text");
​
 // Do something with the value

 }
GetValue

Returns the value of the property specified if it exists otherwise a null is returned.

Syntax:

object GetValue(string property)

Example:

Get the “MyTextBox” scene object and make sure that it was found by checking against the null
value. If the scene object was found, then try to get the value for “PropertyName”. Check the
value return against null to make sure the property was found.

var textbox = this.Scene.FindObject("MyTextBox");
if (textbox != null)
{
​ var value = textbox.GetValue("PropertyName");
​
​ if (value != null)
​ {
​ ​ // Your code to use the value for PropertyName
​ }

27 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

SetValue

Sets the property value for the type specified.

Syntax:

void SetValue(string property, object value)

Example:

Get the “MyTextBox” scene object and make sure that it was found by checking against the null
value. If the scene object was found, then set the Text property of the scene object to “Test.

var textbox = this.Scene.FindObject("MyTextBox");
if (textbox != null)
{
​ textbox.SetValue("Text", “Test”);
​
}

28 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

IDynamicObject

The IDynamicObject is the base interface for graphics and effects scene objects. It extends the
functionality of the ISceneObject described earlier.

Namespace: Chyron.Framework.Scene.Objects

Properties

Name Type Description
Animations AnimationList Gets the list of animations for this scene object.

29 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Events

PropertyAnimated

Event is triggered when one of the scene properties is animated.

Syntax:

void PropertyAnimated(IDynamicObject parent, string property)

Example:

Register the OnPropertyAnimated event handler to a graphics Text objects (Text1)
PropertyAnimated event. This example handles the property-animated event for the
“MyGraphicText” object and x position property.

public ScriptTest()
{
​ InitializeComponent();
​ ​ ​
​ Text1.PropertyAnimated += OnPropertyAnimated;
​
​ ​ ​
​ ​
}
// Event handler for the PropertyAnimated event of the scene object
private void OnPropertyAnimated(IDynamicObject dynamicObject, string
property,
​ ​ ​ ​ ​ ​ object value)
{
​ if (dynamicObject.Name == "MyGraphicText" && property == "PositionX")
​ {
​ ​ // Your code for handling the property animated event ​ ​
​ }
}

30 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Methods

FindAnimation

Attempts to find the animation using the name specified and return it. If the animation was not
found then a null is returned.

Syntax:

IAnimation FindAnimation(string name)

Example:

Attempt to get the animation using the name specified “MyAction” and if found then the
animation object is returned. We must check for null before to make sure that a valid object was
returned.

private void FindAnimationExample()
{
​ ​ ​
​ var animation = Text1.FindAnimation("MyAction");
​ ​ ​
​ if (animation != null)
​ {
​ ​ // Your code to manipulate the animation
​ }
​ ​ ​
}
​
GetAnimation

Attempts to find the animation using the name specified and return it. If the animation was not
found, then a new animation with the name specified is returned.

Syntax:

IAnimation GetAnimation(string name)

Example:

Attempt to get the animation using the name specified “MyAction”, if the animation is not found
then a new animation is created and returned.

private void GetAnimationExample()
{​
​ var animation = Text1.GetAnimation("MyAction");​

// Your code to manipulate the animation​
}

31 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

IAction

The object describes an action used within a scene. It is the element used within the
SceneActionList described below.

Namespace: Chyron.Powerbox.Scene.Actions

Properties

Name Type Description
Name string Gets the name of the Action
ScriptName string Gets the name of the script associated with this Action
Length TimeCode Gets or sets the length in time for this Action
Animations IEnumerable<IAnimation> Gets the list of animations associated with this Action
Playing bool Gets the flag indicating if the Action is playing or not.

Events

Name Description
Played Event triggered when the action is played
Finished Event triggered when the action has finished playing.

32 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Methods

Play

Plays the action.

Syntax:

void Play()

Example:

Handles a SelectedIndexChanged event for a ComboBox (see Control Panel section) that will
take the current selected action name from the MyActionComboBox and use that to lookup the
action in the current scenes action list. If the action was found and is not playing, then play the
action.

private void OnSlectedIndexChanged(object sender, EventArgs args)
{
​ var name = MyActionComboBox.SelectedItem as string;
​ ​ ​
​ var action = this.Scene.Actions.Find(name);
​ ​ ​
​ if (action !=- null && !action.Playing)
​ {​
​ ​ action.Play();
​ }
}

33 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Stop

Stops the action if being played.

Syntax:

void Stop()

Example:

Handles a SelectedIndexChanged event for a ComboBox (see Control Panel section) that will
take the current selected action name from the MyActionComboBox and use that to lookup the
action in the current scenes action list. If the action was found and is playing, then stop the
action.

private void OnSlectedIndexChanged(object sender, EventArgs args)
{
​ var name = MyActionComboBox.SelectedItem as string;
​ ​ ​
​ var action = this.Scene.Actions.Find(name);
​ ​ ​
​ if (action !=- null && action.Playing)
​ {​
​ ​ action.Stop();
​ }
}

34 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Reverse

Reverses the action.

Syntax:

void Reverse()

Example:

Handles a SelectedIndexChanged event for a ComboBox (see Control Panel section) that will
take the current selected action name from the MyActionComboBox and use that to lookup the
action in the current scenes action list. If the action was found, and is not playing, then reverse
the action.

private void OnSlectedIndexChanged(object sender, EventArgs args)
{
​ var name = MyActionComboBox.SelectedItem as string;
​ ​ ​
​ var action = this.Scene.Actions.Find(name);
​ ​ ​
​ if (action !=- null && !action.Playing)
​ {​
​ ​ action.Reverse();
​ }
}

35 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

SceneActionList​

Contains a list of IAction elements for a scene that allows for the access, manipulation and
monitoring of these elements.

Namespace:​ Chyron.PowerBox.Scene.Actions

Properties

Name Type Description
Count int The number of IAction elements in the list.

Methods

Contains

Returns true if an action with the name specified exists in the list, false if it does not.

Syntax:

bool Contains(string name)

Example:

Check if the current scenes action list contains the action “MyAction” in the list prior to using the
Find() method and manipulating the action.

private void ContainsActionExample()
{
​ ​ ​ ​ ​
​ if (this.Scene.Actions.Contains("MyAction") == true)
​ {

var action = this.Scene.Actions.Find("MyAction");

​ ​ // Your code to manipulate the action
​ }
​ ​ ​
}
​

36 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Find

Returns the IAction element that matches the name specified if found or null is not found. A
check of the return value against null is required.

Syntax:

IAction Find(string name)

Example:

Attempt to find “MyAction” action in the current scenes action list. Check to make sure that the
action was found by checking the return value against null.

private void FindActionExample()
{
​ ​ ​
​ var action = this.Scene.Actions.Find("MyAction");
​ ​ ​
​ if (action != null)
​ {
​ ​ // Your code to manipulate the action
​ }
​ ​ ​
}
​

IAnimation

This object describes an action used within a scene. It is the element used within the
SceneActionList described below.

Namespace: Chyron.PowerBox.Scene.Objects

37 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Properties

Name Type Description
Name string Gets the name of the Animation
ScriptName string Gets the script name for this animation.
Loop bool Gets the flag indicating whether the animation is to loop

or not.
HasKeyFrames bool Gets the flag indicating whether the animation contains

keyframes.
IsDefault bool Gets the flag indicating whether this animation is the

default.
ParentObject IDynamicObject Gets the parent object that owns this animation.
Length TimeCode Gets the length in time for this animation.
Keyframes KeyframeList Gets the list of keyframes associated with this animation.
[string name] IKeyframe Indexer allowing the scene author access to the

keyframes associated with this animation as if accessing
an array of elements using the name. When using the
indexer to access animations keyframes it works just like
the Find() method described below in which case a null is
returned if the name specified is not found.
Example:
private void
FindAnimationKeyframeExampleUsingIndexer()
{​
 var animation =

Text1.Animations.Find("MyAnimation");
​ ​ ​
 if (animation != null)
 {
 var keyframe =

animation["MyStartingKeyFrame"];
​ ​ ​ ​
 if (keyframe != null)
 {
​ // Your code to manipulate the
 // animations keyframe
 }
 }​ ​
}

[int index] IKeyframe Indexer allowing the scene author iterate over all the
animations keyframes by using an indexer.

38 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Example:

private void

FindAnimationKeyframeExampleUsingIndexer()
{
​ ​ ​
 var animation =
 Text1.Animations.Find("MyAnimation");
​ ​ ​
 if (animation != null)
 {
 for (var i = 0;
 i < animation.Keyframes.Count;
 i++)
 {
 var keyframe = animation[i];
​ ​ ​ ​
​ // Your code to manipulate the
 // animations keyframe
​ ​ ​
 }
 }​ ​ ​
}
​ ​

39 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Methods

Find

There are two methods available which enables the author to find a keyframe in the animation.
One uses the name and the other the frame index. If any of these methods cannot find the
keyframe based on the parameter then a null is retuned.

Syntax:

IKeyframe Find(string name)

IKeyframe Find(int frame)

Example:

Attempts to find the “MyKeyframe” keyframe in the “MyAnimation” animation. Notice that each
find checks the returned value against null to make sure a valid object is returned.

private void FindKeyframeExample ()
{
​ ​ ​
​ var animation = Text1.Animations.Find("MyAnimation");
​ ​ ​
​ if (animation != null)
​ {
​ ​ var keyframe = animation.Find("MyKeyframe");
​ ​ ​
​ ​ if (keyframe != null)
​ ​ {
​ ​ ​ // You code to manipulate the keyframe
​ ​ }
​ }
​ ​ ​
}

40 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

GetFirstKeyframe

Syntax:

IKeyframe GetFirstKeyframe();

Example:

Gets the first keyframe from “MyAnimation” animation. Notice that the keyframe returned from
GetFirstKeyframe() is checked against null in case not keyframes are present.

private void GetFirstKeyframeExample ()
{​
​ var animation = Text1.Animations.Find("MyAnimation");
​ ​ ​
​ if (animation != null)
​ {
​ ​ var keyframe = animation.GetFirstKeyframe();
​ ​ ​
​ ​ if (keyframe != null)
​ ​ {
​ ​ ​ // You code to manipulate the keyframe
​ ​ }
​ }​
}
GetLastKeyframe

Syntax:

IKeyframe GetLastKeyframe()

Example:

Gets the last keyframe from “MyAnimation” animation. Notice that the keyframe returned from
GetLastKeyframe() is checked against null in case not keyframes are present.

private void GetLastKeyframeExample ()
{​
​ var animation = Text1.Animations.Find("MyAnimation");​
​ if (animation != null)
​ {
​ ​ var keyframe = animation.GetLastKeyframe();
​ ​ if (keyframe != null)
​ ​ {
​ ​ ​ // You code to manipulate the keyframe
​ ​ }
​ }
}

41 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

AnimationList

Contains a list of IAnimation elements for a scene that allows for the access, manipulation and
monitoring of these elements.

Namespace:​ Chyron.PowerBox.Scene.Objects

Properties

Name Type Description
Count int The number of IAnimation elements in the list.
AllKeyfarmes IEnumerable<IKeyframe> Returns a list of all keyframes from all the animations.
[string name] IAnimation Indexer allowing the scene author access to the

animations as if accessing an array of elements using
the name. When using the indexer to access
animations it works just like the Find() method
described below in which case a null is returned if the
name specified is not found.

Example:
private void
FindAnimationExampleUsingIndexer()
{
​ ​ ​
​ var animation =

Text1.Animations["MyAnimation"];
​ ​ ​ ​
​ if (animation!= null)
​ {
​ ​ // Your code to manipulate
the
 // animation
​ }
​ ​ ​
}

42 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Methods

Find

Attempts to find the animation using the name specified. If the animation is found, then the
object is returned otherwise a null is returned if the animation is not found.

Syntax:

IAnimation Find(string name)

Example:

Attempt to find “MyAnimation” animation in the graphics text object Text1. Check to make sure
that the animation was found by checking the return value against null.

private void FindAnimationExample()
{​
​ var animation = Text1.Animations.Find("MyAnimation");
​ ​ ​ ​
​ if (animation!= null)
​ {
​ ​ // Your code to manipulate the animation
​ }​
}

43 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Get

Attempts to find the animation using the name specified and it is does not then it will add a new
animation with the name specified.

Note – Care should be taken if this method is used, since new animations will be added if the
name specified is not found. The Find() method is the suggested method to use.

Syntax:

IAnimation Get(string name)

Example:

Attempt to find “MyAnimation” animation in the graphics text object Text1 if it is not found then a
new animation is added with the name specified. Notice that no check is required for the
animation returned as it is either found or created so a valid object will always be returned.

private void GetAnimationExample()
{​
​ var animation = Text1.Animations.Get("MyAnimation");​ ​

// Your code to manipulate the animation
​ ​ ​
}
IParameter

The IParameter is interface used to define all parameter type objects with the PRIME system. It
is used as the object type for the IParameterList described below, and is used to access,
modify and manipulate parameter values within the scene.

Namespace - Chyron.Enterprise.Infrastructure.Parameters

Properties

Type Name Description
string Name Gets the name of the

Parameter
object Value Gets or sets the value of

the parameter

IParameterList

The IParameterList is the interface for all lists utilizing the IParameter interface described
above. It allows for the access, modification and manipulation of these elements using the
methods defined below.

Namespace: Chyron.Enterprise.Infrastructure.Parameters

44 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Events

Name Description
ParameterChanged This event is triggered when an IParameter element in the list has changed.

This event can be used to detect when a particular parameter of interest value
has been modified so that some process can take place.

Example:

The handler must first be attached to the event such as in the constructor method, which is the
same name as the scene, which is seen below, and is called when the main scripting object is
created. The using line must be added to the list at the beginning of the script so that the
IParameter properties and methods can be accessed in the handler.

// Required for IParameter type in handler
using Chyron.Enterprise.Infrastructure.Parameters;
// constructor
public ScriptTest()
{
​ InitializeComponent();
​ ​ ​ ​
​ // Attach handler to event
​ this.Parameters.ParameterChanged += OnParameterChanged;
​ ​ ​ ​
}
​ …​

// Handles the ParameterChanged event
private void OnParameterChanged(IParameter parameter, object previousValue)
{
​ if (parameter.Name == "MyParameter")
​ {
​ ​ try
​ ​ {
​ ​ ​ // Add your code here
​ ​ }
​ ​ catch (Exception ex)
​ ​ {
​ ​ ​ // Add you code to handle exception
​ ​ ​ Log("Failed to handle ParameterChanged event");​ ​
​ ​ }
​ }
}

45 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Methods

IParameter Find(string name)

Attempts to find the IParameter element with the name specified in the list. If found, then the
parameter is return otherwise a null value is returned. The return value should be checked for
null to determine if the parameter was found and proper handling should be implemented.

Example:

Find a IParameter element by name to get the value. Verify that the parameter actually was
found by checking the if the return value is null. If the parameter was not found log some error
message and use a default value otherwise use the parameters value.

var parameterValue = "DefaultParameterValue";
var parameter = this.Parameters.Find("MyParameter");
if (parameter == null)
{
 Log("MyParameter was not found");
}
else
{
 parameterValue = Convert.ToString(parameter.Value);
}
​

IParameter Set(string name, object value)

Sets or adds the value of the IParameter element whose name is specified in the method. If the
IParameter element specified by the name already exists, then the value is set but if it not then
a new IParameter element is added with name and values specified. Notice that the value of
the parameter is a generic object which is to allow a parameter to be any one of the following
types (Boolean, ByteArray, DateTime, Double, Int, Long, String and TimeSpan).

Example:

var parameterValue = "NewValue";
var parameter = this.Parameters.Set("MyParameter", parameterValue);

46 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

IParameter Add(object value)

Adds a new IParameter element to the list with the value specified. The name of the parameter
will be “Parameter N” where N is an incremental number for the parameter. Notice that the
value of the parameter is a generic object which is because a parameter can be any one of the
following types (Boolean, ByteArray, DateTime, Double, Int, Long, String and TimeSpan). The
parameter added will only be temporary and is only available during the playout.

Example:

var newParameter = this.Parameters.Add("This is a test");
​

void Remove(IParameter parameter)

Removes a IParameter element from the list such as a temporary one that was added with the
Add() method described above.

Example:

this.Parameters.Remove(newParameter);

Warning:

Removing parameters that were not added through the Add() or Set() method is not
recommended as it may cause adverse and/or unexpected affects during the playout.​

47 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

SceneControl

SceneControl is the top-level object available to scene script. This object allows the script
author the ability to affect the state of the current scene and its objects, store and retrieve
context information for use by other scripts, and a plethora of other features.

Namespace:​ Chyron.PowerBox.Playout.UserInterface

Properties

Name Type Description
Scene IScene This returns the current scene that is being acted upon. Access to

all scene properties are done through this property (see Scene
section)

Parameters IParameterList This property allows the script author to access and modify any of
the parameters defined in the scene (see IParameterList section)

InvokeRequired bool If this property is true then Invoke() method needs to be used
update any controls on the Control Panel. If false then Invoke() is
not required and update to any of the Control Panel controls
directly.

Example:

To enable a MyButton button on the control panel the following code is needed if this is being
done on a separate thread.

// Enable/Disable MyButton on control panel
private void EnableButton(bool enable)
{
​ if (this.InvokeRequired)
​ {
​ ​ Invoke(new Action<bool>(EnableButton), new object [] { enable }
);
​ }
​ else
​ {
​ ​ MyButton.Enabled = enable;
​ }
}
​

48 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Events

To utilize events within your script you will need to attach an event handler that will perform
some task before continuing with the process. Take note that tasks within the event handlers
should be kept short so as not to delay the scene. In addition, error handling should be
considered, as any code that generates an exception will cause the scene to stop processing at
that point.

BeforeLoad

This event is triggered before the scene is loaded into preview.

Syntax:

void BeforeLoad(IScene scene)

Example:

Attach your event handler method OnBeforeLoad to the BeforeLoad event in the constructor
of the scenes script class. Any time the BeforeLoad event is triggered the OnBeforeLoad
method will be called.

// constructor
public ScriptTest()
{
​ InitializeComponent();
​ ​ ​ ​

// Attach event handler to event
this.BeforeLoad += OnBeforeLoad;​ ​

​ ​ ​ ​
}

…

// Handles the BeforeLoad event

private void OnBeforeLoad(IScene scene)
{
 // Add your code here, but make sure it is not a long process
}

49 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

AfterLoad

This event is triggered after the scene is loaded into preview. It will not be triggered if the scene
is taken to air directly. This event is triggered before the scene is loaded into preview.

Syntax:

void AfterLoad(IScene scene)

Example:

Attach your event handler method OnAfterLoad to the AfterLoad event in the constructor of
the scenes script class. Any time the AfterLoad event is triggered the OnAfterLoad method will
be called.

// constructor
public ScriptTest()
{
​ InitializeComponent();
​ ​ ​ ​

// Attach event handler to event
this.AfterLaod += OnAfterLoad;​

}

​ …

// Handles the AfterLoad event

private void OnAfterLoad(IScene scene)
{
 // Add your code here, but make sure it is not a long process
}

50 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

AfterPlay

This event is triggered after the scene is taken to air. It will not be triggered if the scene is
directly loaded into the preview channel. This event is triggered before the scene is loaded into
preview.

Example:

Attach your event handler method OnAfterPlay to the AfterPlay event in the constructor of the
scenes script class. Any time the AfterPlay event is triggered the OnAfterPlay method will be
called.

// constructor
public ScriptTest()
{
​ InitializeComponent();
​ ​ ​ ​

// Attach event handler to event
this.AfterPlay += OnAfterPlay;​

}

​ …

// Handles the AfterPlay event

private void OnAfterPlay(IScene scene)
{
 // Add your code here, but make sure it is not a long process
}

51 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

BeforeStop

This event is triggered before the scene is transferred from air to preview. Clearing the scene
from preview or air does not trigger this event. This event is triggered before the scene is loaded
into preview.

Example:

Attach your event handler method OnBeforeStop to the BeforeStop event in the constructor of
the scenes script class. Any time the BeforeStop event is triggered the OnBeforeStop method
will be called.

// constructor
public ScriptTest()
{
​ InitializeComponent();
​ ​ ​ ​

// Attach event handler to event
this.BeforeStop -= OnBeforeStop;

}

​ …

// Handles the BeforeStop event

private void OnBeforeStop(IScene scene)
{
 // Add your code here, but make sure it is not a long process
}

52 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

AfterStop

This event is triggered after the scene is transferred from air to preview. Clearing the scene from
preview or air does not trigger this event. This event is triggered before the scene is loaded into
preview.

Example:

Attach your event handler method OnAfterStop to the AfterStop event in the constructor of the
scenes script class. Any time the AfterStop event is triggered the OnAfterStop method will be
called.

// constructor
public ScriptTest()
{
​ InitializeComponent();
​ ​ ​ ​

// Attach event handler to event
this.AfterStop += OnAfterStop;​

}

​ …

// Handles the AfterStop event
private void OnAfterStop(IScene scene)
{
 // Add your code here, but make sure it is not a long process
}

53 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Methods

Invoke

This method executes the specified delegate on the thread that owns the control's underlying
window handle.

Syntax:

object Invoke(Delegate method)

Example:

To enable a MyButton button on the control panel the following code is needed if this is being
done on a separate thread.

// Enable/Disable MyButton on control panel
private void EnableButton(bool enable)
{
​ if (this.InvokeRequired)
​ {
​ ​ Invoke(new Action<bool>(EnableButton), new object [] { enable }
);
​ }
​ else
​ {
​ ​ MyButton.Enabled = enable;
​ }
}

54 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

FrameRate

Contains information about the frame rate.

Namespace: Chyron.Enterprise.Infrastructure.TimeCode

Properties

Name Type Description
FieldRate double Gets the field rate.
Interlaced bool Gets the flag indicating if the frame rate is interlaced.
Rate double Get the rate.
RoundedFieldRate Int Gets the FieldRate round to an interger.
RoundedRate Int Gets the Rate rounded to an interger.
Type FrameRateType The FrameRateType is an enumerated value that indicates

the type of this frame rate. Below is a list of valid values and
what they mean.
_24​ ​ 24 Hz
_25 ​ ​ 25 Hz
_30 ​ ​ 30 Hz
_29_97 ​29.97 Hz
_48 ​ ​ 48 Hz
_50 ​ ​ 50 Hz
_60 ​ ​ 60 Hz
_59_94 ​59.94 Hz
_23 ​ ​ 23 Hz
 _100 ​ 100 Hz

55 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Resolution

Contains information about the resolution.

Namespace: Chyron.PowerBox.Scene.Objects

Properties

Name Type Description
Width int Gets the width in pixels for this resolution.
Height bool Gets the height in pixel for this resolution.
Size Size Gets the size (height and width) of this resolution.
FrameRate FrameRate Gets the frame rate for this resolution (see FrameRate section).
Interlaced Bool Gets a flag indicating that the resolution is interlaced,
PixelAspect double Gets the pixel aspect ratio for this resolution.
AspectRation float Gets the aspect ratio for this resolution.

56 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Workflow Logger

​
Workflow logging is available to the scene scripts by using the runtime instance of the workflow
manager object. There is a single method LogMessage() that can be used for logging to the
WorkFlow Monitor.

Namespace: Chyron.Framework.Application.WorkFlow

Syntax:

void LogMessage(WorkflowEvent eventType, string sceneName, string message)

Example:

using Chyron.Framework.Application.WorkFlow;

…

WorkflowManager.Instance.LogMessage(

WorkflowEvent.Message,

this.Scene.Name,

"My Message");

…

57 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Workflow Configuration Settings

In order for logging to work, the user will need to enable it in the PRIME configuration settings
form.

Logging Options

These options allow you to fine tune the events/messages that you want PRIME to log. These
options will only be available if the Workflow Logger is enabled.

Action Triggers​ ​ If checked enables logging of action triggers.
Intelligent Interface​ ​ If checked enables logging of intelligent interface events.
Scene State Changes​ If checked enables logging of scene state changes.
Script Execution​ ​ If checked allows logging of script execution.

58 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Workflow Monitor

The Workflow monitor available through the PRIME application will display the log entries sent
using the Workflow logger methods list above.

59 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Control Panel Objects

Each scene has a set of controls that are collectively referred to as the control panel. These
controls are exposed to scripting, providing specialized properties and functions pertinent to
each control type. From the scenes C# script controls are accessed using just their name. For
example, adding a new button control to the scenes control panel will automatically be named
“Button 1”. Accessing this control from the scenes C# script will be by the name Button1.
Although the name of a control can contain spaces these spaces are removed in the scripting
objects name. Accessing a scenes control through the Application Script is different and will be
described in another section.

All controls implement the ISceneObject interface, so all properties, events and methods from
this object are available to all of these objects. Most control panel controls correspond to
controls in the Microsoft C# library. To get a more complete list of properties, events and
methods for each of the controls in this section, refer to Microsoft’s documentation.

Note – The FilePicker, Time Code Editor and Asset Browser do not correspond to a
Microsoft C# control.

Button

The Button can be used to interact with the scene by performing a process when it is clicked.

Properties

Name Type Description
Name string Gets the name of the control
Enabled bool Gets the flag indicating if the control is enabled (true) or

disabled (false).
Visible bool Gets the flag indicating if the control is visible (true) or not

(false).
Text string Gets or sets the buttons label text.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

60 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Click​

Event triggered when the button is clicked with the mouse.

Syntax:

void Click(object sender, EventArgs args)

Example: This example registers a Click event handler for MyButton Button control. The
handler will change the Buttons Text property to “Stop” if the current text is “Play” and stop the
scenes “MyAction” action. Otherwise if the Button’s text is not “Play” it will change the Buttons
Text property to “Stop” and play the scenes “MyAction” action.​

public ScriptTest()

{
​ InitializeComponent();
​ ​ ​
​ ​ ​
​ MyButton.Click += OnButtonClicked;​ ​ ​
​
}
​ ​
​ ​
// Handles the Click event from MyButton
public void OnButtonClicked(object sender, EventArgs args)
{
​
 var action = this.Scene.Actions.Find("MyAction");
​
​
 if (MyButton.Text == "Play")
 {
 ​ MyButton.Text = "Stop";
 ​ action.Play();
 }
 else
 {
 ​ MyButton.Text == "Play"
 ​ action.Stop();
 }
}

Label

The Label can be used to help identify fields on the control panel by setting the Text property.

Properties

Name Type Description

61 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Name string Gets the name of the control
Enabled bool Gets the flag indicating if the control is enabled (true) or

disabled (false).
Visible bool Gets the flag indicating if the control is visible (true) or not

(false).
Text string Gets or sets the labels text.

TextBox

The TextBox can be used to interact with a scene through binding to graphic controls or to
display context-based text generated within script.

Properties

Name Type Description
Name string Gets the name of the control
Enabled bool Gets the flag indicating if the control is enabled (true) or

disabled (false).
Visible bool Gets the flag indicating if the control is visible (true) or not

(false).
Text string Gets or sets the text that appears in the text box.
Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

TextChanged
This event is triggered when the TextBox controls Text property has changed. Note that this
event us triggered for every character entered or removed. Register a handler if you want to
perform an operation when the Text property is changed in the TextBox.

Syntax:

void TextChanged(object sender, EventArgs args)

62 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Example

public ScriptTest ()
{
 InitializeComponent();
​ ​
 // Get the SAMPLE scene from the ChannelBox database
 var scene = ChannelBox.GetScene("SAMPLE");
​ ​
 // Hook up the event handler for the PlayoutStateChange event
 scene.PlayoutStateChanged += OnPlayoutStateChanged;

}
​
// Handles the PlayoutStateChanged event from the scene.
private void OnPlayoutStateChanged(IChannelElement element)
{
 // Set the TextBox text to the curent playout state
 SceneStateTextBox.Text = element.PlayoutState.ToString();
}

63 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

ComboBox

The ComboBox can be used to interact with a control panel combo box. Below is a list of some
of the ComboBox properties and events of interest. To get a more complete list refer to
Microsoft’s documentation.

Properties

Name Type Description
Name string Gets the name of the control
Enabled bool Gets the flag indicating if the control is enabled (true) or

disabled (false).
Visible bool Gets the flag indicating if the control is visible (true) or not

(false).
SelectedItem Item Type Gets the current selected item in the combo box or null if no

items are selected. Returns an object which is the type of the
items in the ComboBox.

Items ObjectCollection Gets the collection of items for the ComboBox. This property
allows the addition and removal of items in the ComboBox.

Items.Count int Gets the number of items in the ComboBox.
​
Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

64 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

SelectedIndexChanged​

The event is triggered when the selected item is changed in the ComboBox. Register a handler
if you want to perform an operation when the SelectedItem property is changed in the
ComboBox.

Example

Fill in the combo box with the list of all actions in the current scene. Register
OnSelectedIndexChanged handler with the SelectedIndexChanged event from
MyComboBox. The OnSelectedIndexChanged() handler will get the action name from the
ComboBox.SelectedItem property and look up action in the current scenes action list. If the
action is found (not equal to null) and the action is not already playing then execute the Play()
method of the action.

public ScriptTest()
{
​ InitializeComponent();
​ ​ ​
​ ​ ​ ​ ​
​ foreach(vat action in this.Scene.Actions)
​ {
​ ​ MyComboBox.Items.Add(action.Name);
​ }
​ ​ ​
​ MyComboBox.SelectedIndexChanged += OnSelectedIndexChanged;
​ ​ ​ ​
}
​
// Handles the SelectedIndexChanged for MyComboBox

private void OnSlectedIndexChanged(object sender, EventArgs args)
{
​ var name = MyComboBox.SelectedItem as string;
​ ​ ​
​ var action = this.Scene.Actions.Find(name);
​ ​ ​
​ if (action !=- null && !action.Playing)
​ {​
​ ​ action.Play();
​ }
}

65 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

CheckBox

The CheckBox can be used to interact with the scene by performing a process when it is
checked or unchecked.

Properties

Name Type Description
Name string Gets the name of the control
Enabled bool Gets the flag indicating if the control is enabled (true) or

disabled (false).
Visible bool Gets the flag indicating if the control is visible (true) or not

(false).
Checked bool Gets the flag indicating if the checkbox in checked (true) or not

(false).

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

66 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

CheckedChanged

The event is triggered when the check state of the CheckBox has changed.

Syntax:

void CheckedChanged(object sender, EventArgs args)

Example:

public ScriptTest()
{
​ InitializeComponent();
​ ​ ​
​ ​ ​
​ MyCheckBox.CheckedChanged += OnCheckedChanged;
​ ​ ​
​ ​ ​
​
}
​ ​
​ ​
// Handles the CheckedChanged event from MyCheckBox
public void OnCheckedChanged(object sender, EventArgs args)
{
 // Your code for handling the checkbox checkedchanged event
}

67 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

RadioButton

The RadioButton can be used to interact with the scene by performing a process when it is
checked or unchecked.

Properties

Name Type Description
Name string Gets the name of the control
Enabled bool Gets the flag indicating if the control is enabled (true) or

disabled (false).
Visible bool Gets the flag indicating if the control is visible (true) or not

(false).
Checked bool Gets the flag indicating if the radio button in checked (true) or

not (false).

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

68 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

CheckedChanged

The event is triggered when the check state of the RadioButton has changed.

Syntax:

void CheckedChanged(object sender, EventArgs args)

Example:

public ScriptTest()

{
​ InitializeComponent();​
​ ​ ​
​ MyRadioButton.CheckedChanged += OnCheckedChanged;
​ ​ ​
​ ​ ​
​
}
​ ​
​ ​
// Handles the CheckedChanged event from MyRadioButton
public void OnCheckedChanged(object sender, EventArgs args)
{
 // Your code for handling the radio button checkedchanged event
}

69 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

NumericUpDown

The NumericUpDown can be used to interact with the current scene by setting a numeric
value.

Properties

Name Type Description
Name string Gets the name of the control
Enabled bool Gets the flag indicating if the control is enabled (true) or

disabled (false).
Visible bool Gets the flag indicating if the control is visible (true) or not

(false).
Value decimal Gets the value contained in the control.
Minimum decimal Gets or sets the minimum value that the NumericUpDown Value

can be set.
Maximum decimal Gets or sets the maximum value that the NumericUpDown

Value can be set.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

70 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

ValueChanged
This event is triggered when the NumericUpDowns controls Value property has changed.

Syntax:

void ValueChanged(object sender, EventArgs args)

Example:

public ScriptTest ()
{
 InitializeComponent();
​ ​ ​
 // Register handler​ ​ ​
 MyNumericUpDown.ValueChanged += OnValueChanged;
}
​ ​
​ ​
// Handles the ValueChanged event from the NumbericUpDown control
public void OnValueChanged(object sender, EventArgs args))
{
 // Your code to handle the ValeuChanged event of the NumericUpDown control
}

71 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

TrackBar

The TrackBar can be used to interact with the current scene by setting a numeric value.

Properties

Name Type Description
Name string Gets the name of the control
Enabled bool Gets the flag indicating if the control is enabled (true) or

disabled (false).
Visible bool Gets the flag indicating if the control is visible (true) or not

(false).
Value decimal Gets or sets the value contained in the control.
Minimum decimal Gets or sets the minimum value that the TrackBar Value can be

set.
Maximum decimal Gets or sets the maximum value that the TrackBar Value can be

set.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

72 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

ValueChanged
This event is triggered when the TrackBars controls Value property has changed.

Syntax:

void ValueChanged(object sender, EventArgs args)

Example:

public ScriptTest ()
{
 InitializeComponent();
​ ​ ​
 // Register handler​ ​ ​
 MyTrackBar.ValueChanged += OnValueChanged;
}
​ ​
​ ​
// Handles the ValueChanged event from the TrackBar control
public void OnValueChanged(object sender, EventArgs args))
{
 // Your code to handle the ValeuChanged event of the TrackBar control
}

73 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

ListView

The ListView can be used to display lists of items in the control panel. This object is mostly
used by binding it to a DataObject to display its contents.

Properties

Name Type Description
Name string Gets the name of the control
Enabled bool Gets the flag indicating if the control is enabled

(true) or disabled (false).
Visible bool Gets the flag indicating if the control is visible

(true) or not (false).
SelectedItems SelectedListViewItemCollection Gets the list of selected ListViewItems in the

ListView object.
SelectedIndices SelectedIndexCollection Gets the list of selected ListViewItems by index

in the ListView.Items collection.
Items ListViewItemCollection Gets the collection of ListViewItems for the

ListView. This property allows the addition and
removal of items in the ListView.

Items.Count int Gets the number of items in the ListView.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

74 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

SelectedIndexChanged​

The event is triggered when the selected item is changed in the ListView. Register a handler if
you want to perform an operation when the SelectedItems property is changed in the
ComboBox.

Example:

Register OnSelectedIndexChanged handler with the SelectedIndexChanged event from
MyListView. The OnSelectedIndexChanged() handler will get the

public ScriptTest()
{
​ InitializeComponent();
​ ​ ​
​ ​ ​
​ MyListView.SelectedIndexChanged += OnSelectedIndexChanged;
​ ​ ​ ​
}
​
// Handles the SelectedIndexChanged for MyListView

private void OnSlectedIndexChanged(object sender, EventArgs args)
{
​ foreach (var item in MyListView.Items.OfType<ListViewItem>())
​ {
​ ​ // Your code to process selected ListViewItems
​ }
}

75 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

FilePicker

The FilePicker can be used to interact with the scene by allowing files to be selected so that
File properties on other objects can be modified.

Properties

Name Type Description
Name string Gets the name of the control
Enabled bool Gets the flag indicating if the control is enabled (true) or

disabled (false).
Visible bool Gets the flag indicating if the control is visible (true) or not

(false).
File string Gets the file path selected by the file picker.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

76 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

FileChanged

The event is triggered when the file is changed in the FilePicker control.

Syntax:

void FileChanged()

Example

Register OnFileChanged handler with the FileChanged event from MyFilePicker so that some
processing can be performed in the OnFileChanged() handler.

public ScriptTest()
{
​ InitializeComponent();
​ ​ ​ ​ ​
​ MyFilePicker.FileChanged += OnFileChanged;
​ ​ ​ ​
}
​
// Handles the FileChanged for MyFilePicker

private void OnFileChanged()
{
​ var file = MyFilePicker.File;
​

// You code to handle the file changed event from the FilePicker

​ ​
}

77 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

AssetBrowser

The AssetBrowser can be used to interact with the scene by allowing asset files to be selected
for the current projects.

Properties

Name Type Description
Name string Gets the name of the control
Enabled bool Gets the flag indicating if the control is enabled (true) or

disabled (false).
Visible bool Gets the flag indicating if the control is visible (true) or not

(false).
File string Gets the file path selected by the asset browser.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

78 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

FileChanged

The event is triggered when the file is selected in the AssetBrowser control.

Syntax:

void FileChanged()
​
Example:

Register OnFileChanged handler with the FileChanged event from MyAssetBrowser so that
some processing can be performed in the OnFileChanged() handler.

public ScriptTest()
{
​ InitializeComponent();
​ ​ ​ ​ ​
​ MyAssetBrowser.FileChanged += OnFileChanged;
​ ​ ​ ​
}
​
// Handles the FileChanged for MyAssetBrowser

private void OnFileChanged()
{
​ var file = MyFilePicker.File;
​

// You code to handle the file changed event from the AssetBrowser

​ ​
}

79 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

PictureBox

The PictureBox can be used to interact with the scene by allowing images to be displayed in
the control panel.

Properties

Name Type Description
Name string Gets the name of the control
Enabled bool Gets the flag indicating if the control is enabled (true) or

disabled (false).
Visible bool Gets the flag indicating if the control is visible (true) or not

(false).
Image Image Gets or sets the image to be displayed in the picture box.

Example:

Sets the image of the picture box when the image file is selected from the system.

public ScriptTest()
{
​ InitializeComponent();
​ ​ ​ ​ ​
​ ImageFilePicker.FileChanged += OnFileChanged;
​ ​ ​ ​
}
​

// Handles the FileChanged for ImageFilePicker
private void OnFileChanged()
{
​ var file = ImageFilePicker.File;
​
​ MyPictureBox.Image = new Bitmap(file);
​ ​
 }
​ ​

80 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

TimeCodeEditor

The TimeCodeEditor can be used to interact by using a timer to trigger actions or processes.

Properties

Name Type Description
Name string Gets the name of the control
Enabled bool Gets the flag indicating if the control is enabled (true) or

disabled (false).
Visible bool Gets the flag indicating if the control is visible (true) or not

(false).
Frames int Gets or sets the number of frames.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

81 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

FramesChanged

This event is triggered when the TimeCodeEditor controls frames have changed.

Syntax:

void FranmesChanged()

Example:

public ScriptTest()
{
​ InitializeComponent();

​ MyTimeCodeEditor.FramesChanged += OnFramesChanged;
​ ​ ​
}
​ ​
// Handles the FramesChanged event for MyTimeCodeEditor
private void OnFramesChanged()
{
​ // You code to handle the FramesChanged event
}

82 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Canvas Objects

These controls are graphics based controls that implement the IDynamicObject and
ISceneObject interfaces, so all properties, event and methods from these interfaces are
implemented in the following objects.

Text

Object used for 2D and 3D text display.

Properties

Name Type Description
Name string Gets the name of the graphic object.
Enabled bool Gets the flag indicating if the graphics object is enabled

(true) or disabled (false).
Scene IScene Gets the scene this object belongs to.
Opacity double Gets or sets the opacity or the graphic object.
Text string Gets or sets the text for this graphic object.
Effects SceneObjectList<IEffect> Gets the list of effects associated with this graphics

object.
Animations AnimationList Gets the list of animations associated with this graphic

object.
Events EventList Gets the list of events associated with this graphic

object.
_2d _2dTextProperties Gets the 2D text properties.
_3d _3dTextProperties Gets the 3D text properties.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

PropertyAnimated

See PropertyAnimated in IDynamicObject Events section.

83 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

TextChanged​

Event is triggered when the Text is property is changed in the Text graphics object.

Syntax:

void TextChanged(ISceneObject sceneObject)

Example:

84 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Image

Object used for displaying images on the Canvas.

Properties

Name Type Description
Name string Gets the name of the graphic object.
Enabled bool Gets the flag indicating if the graphics object is enabled

(true) or disabled (false).
Scene IScene Gets the scene this object belongs to.
Opacity double Gets or sets the opacity or the graphic object.
Effects SceneObjectList<IEffect> Gets the list of effects associated with this graphics

object.
Animations AnimationList Gets the list of animations associated with this graphic

object.
Events EventList Gets the list of events associated with this graphic

object.
File string Gets or sets the image file to be displayed within this

graphics object.
Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

PropertyAnimated

See PropertyAnimated in IDynamicObject Events section.

ImageChanged

Event is triggered when the Image is property is changed in the Image graphics object.

Syntax:

void ImageChanged(ISceneObject sceneObject)

Example:

85 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Clip

Object used for clips in the Canvas.

Properties

Name Type Description
Name string Gets the name of the graphic object.
Enabled bool Gets the flag indicating if the graphics object is enabled

(true) or disabled (false).
Scene IScene Gets the scene this object belongs to.
Opacity double Gets or sets the opacity or the graphic object.
Effects SceneObjectList<IEffect> Gets the list of effects associated with this graphics

object.
Animations AnimationList Gets the list of animations associated with this graphic

object.
Events EventList Gets the list of events associated with this graphic

object.
File string Gets or sets the image file to be displayed within this

graphics object.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

PropertyAnimated

See PropertyAnimated in IDynamicObject Events section.

Finished

Event is triggered when the clip finishes playing.

Syntax:

void Finished(ISceneObject sceneObject)

Example:

86 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Cube

Object used for 3D cube object in the Canvas.

Properties

Name Type Description
Name string Gets the name of the graphic object.
Enabled bool Gets the flag indicating if the graphics object is enabled

(true) or disabled (false).
Scene IScene Gets the scene this object belongs to.
Opacity double Gets or sets the opacity or the graphic object.
Effects SceneObjectList<IEffect> Gets the list of effects associated with this graphics

object.
Animations AnimationList Gets the list of animations associated with this graphic

object.
Events EventList Gets the list of events associated with this graphic

object.
File string Gets or sets the image file to be displayed within this

graphics object.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

PropertyAnimated

See PropertyAnimated in IDynamicObject Events section.

87 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Model

Object used for model on the Canvas.

Properties

Name Type Description
Name string Gets the name of the graphic object.
Enabled bool Gets the flag indicating if the graphics object is enabled

(true) or disabled (false).
Scene IScene Gets the scene this object belongs to.
Opacity double Gets or sets the opacity or the graphic object.
Effects SceneObjectList<IEffect> Gets the list of effects associated with this graphics

object.
Animations AnimationList Gets the list of animations associated with this graphic

object.
Events EventList Gets the list of events associated with this graphic

object.
File string Gets or sets the image file to be displayed within this

graphics object.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

PropertyAnimated

See PropertyAnimated in IDynamicObject Events section.

FileChanged

Event is triggered when the File property of the Model is changed.

Syntax:

void FileChanged(ISceneObject sceneObject)

Example:

88 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Effects

These controls are graphics effects that may be associated with graphical controls. These
objects implement the IDynamicObject and ISceneObject interfaces, so all properties, events
and methods from these interfaces are implemented in the following objets.

Properties

Name Type Description
Name string Gets the name of the graphic object.
Enabled bool Gets the flag indicating if the graphics object is

enabled (true) or disabled (false).
Scene IScene Gets the scene this object belongs to.
Opacity double Gets or sets the opacity or the graphic object.
Effects SceneObjectList<IEffect> Gets the list of effects associated with this graphics

object.
Animations AnimationList Gets the list of animations associated with this graphic

object.
Events EventList Gets the list of events associated with this graphic

object.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

PropertyAnimated

See PropertyAnimated in IDynamicObject Events section.

89 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Crop

Properties

Name Type Description
Name string Gets the name of the graphic object.
Enabled bool Gets the flag indicating if the graphics object is enabled

(true) or disabled (false).
Scene IScene Gets the scene this object belongs to.
Opacity double Gets or sets the opacity or the graphic object.
Effects SceneObjectList<IEffect> Gets the list of effects associated with this graphics

object.
Animations AnimationList Gets the list of animations associated with this graphic

object.
Events EventList Gets the list of events associated with this graphic

object.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

PropertyAnimated

See PropertyAnimated in IDynamicObject Events section.

90 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Mask

Properties

Name Type Description
Name string Gets the name of the graphic object.
Enabled bool Gets the flag indicating if the graphics object is enabled

(true) or disabled (false).
Scene IScene Gets the scene this object belongs to.
Opacity double Gets or sets the opacity or the graphic object.
Effects SceneObjectList<IEffect> Gets the list of effects associated with this graphics

object.
Animations AnimationList Gets the list of animations associated with this graphic

object.
Events EventList Gets the list of events associated with this graphic

object.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

PropertyAnimated

See PropertyAnimated in IDynamicObject Events section.

91 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Material

Properties

Name Type Description
Name string Gets the name of the graphic object.
Enabled bool Gets the flag indicating if the graphics object is enabled

(true) or disabled (false).
Scene IScene Gets the scene this object belongs to.
Opacity double Gets or sets the opacity or the graphic object.
Effects SceneObjectList<IEffect> Gets the list of effects associated with this graphics

object.
Animations AnimationList Gets the list of animations associated with this graphic

object.
Events EventList Gets the list of events associated with this graphic

object.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

PropertyAnimated

See PropertyAnimated in IDynamicObject Events section.

92 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Light

Properties

Name Type Description
Name string Gets the name of the graphic object.
Enabled bool Gets the flag indicating if the graphics object is enabled

(true) or disabled (false).
Scene IScene Gets the scene this object belongs to.
Opacity double Gets or sets the opacity or the graphic object.
Effects SceneObjectList<IEffect> Gets the list of effects associated with this graphics

object.
Animations AnimationList Gets the list of animations associated with this graphic

object.
Events EventList Gets the list of events associated with this graphic

object.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

PropertyAnimated

See PropertyAnimated in IDynamicObject Events section.

93 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Render Texture

Properties

Name Type Description
Name string Gets the name of the graphic object.
Enabled bool Gets the flag indicating if the graphics object is enabled

(true) or disabled (false).
Scene IScene Gets the scene this object belongs to.
Opacity double Gets or sets the opacity or the graphic object.
Effects SceneObjectList<IEffect> Gets the list of effects associated with this graphics

object.
Animations AnimationList Gets the list of animations associated with this graphic

object.
Events EventList Gets the list of events associated with this graphic

object.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

PropertyAnimated

See PropertyAnimated in IDynamicObject Events section.

94 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Warp

Properties

Name Type Description
Name string Gets the name of the graphic object.
Enabled bool Gets the flag indicating if the graphics object is enabled

(true) or disabled (false).
Scene IScene Gets the scene this object belongs to.
Opacity double Gets or sets the opacity or the graphic object.
Effects SceneObjectList<IEffect> Gets the list of effects associated with this graphics

object.
Animations AnimationList Gets the list of animations associated with this graphic

object.
Events EventList Gets the list of events associated with this graphic

object.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

PropertyAnimated

See PropertyAnimated in IDynamicObject Events section.

95 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Page Turn

Properties

Name Type Description
Name string Gets the name of the graphic object.
Enabled bool Gets the flag indicating if the graphics object is enabled

(true) or disabled (false).
Scene IScene Gets the scene this object belongs to.
Opacity double Gets or sets the opacity or the graphic object.
Effects SceneObjectList<IEffect> Gets the list of effects associated with this graphics

object.
Animations AnimationList Gets the list of animations associated with this graphic

object.
Events EventList Gets the list of events associated with this graphic

object.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

PropertyAnimated

See PropertyAnimated in IDynamicObject Events section.

96 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Transition

Properties

Name Type Description
Name string Gets the name of the graphic object.
Enabled bool Gets the flag indicating if the graphics object is enabled

(true) or disabled (false).
Scene IScene Gets the scene this object belongs to.
Opacity double Gets or sets the opacity or the graphic object.
Effects SceneObjectList<IEffect> Gets the list of effects associated with this graphics

object.
Animations AnimationList Gets the list of animations associated with this graphic

object.
Events EventList Gets the list of events associated with this graphic

object.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

PropertyAnimated

See PropertyAnimated in IDynamicObject Events section.

97 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Crawl

Properties

Name Type Description
Name string Gets the name of the graphic object.
Enabled bool Gets the flag indicating if the graphics object is enabled

(true) or disabled (false).
Scene IScene Gets the scene this object belongs to.
Opacity double Gets or sets the opacity or the graphic object.
Effects SceneObjectList<IEffect> Gets the list of effects associated with this graphics

object.
Animations AnimationList Gets the list of animations associated with this graphic

object.
Events EventList Gets the list of events associated with this graphic

object.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

98 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

PropertyAnimated

See PropertyAnimated in IDynamicObject Events section.

Example:

The scene uses a FilePicker control on the Control Panel to allow the file used in the crawl
effect to be changed while the scene is on air. It handles the FileChanged event of the
FilePicker control to stop the current crawl update the file and restart.

public ScriptTest()
{
 InitializeComponent();
​ ​ ​
}
​
​ ​ ​
private void MyFilePicker_FileChanged()
{
 var filePath = MyFilePicker.File;

 if (! string.IsNullOrWhiteSpace(filePath) &&
System.IO.File.Exists(filePath))
 {
​ MyCrawl.Stop();
​ MyCrawl.File = filePath;
​ MyCrawl.Start();
 }
}

99 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Character

Properties

Name Type Description
Name string Gets the name of the graphic object.
Enabled bool Gets the flag indicating if the graphics object is enabled

(true) or disabled (false).
Scene IScene Gets the scene this object belongs to.
Opacity double Gets or sets the opacity or the graphic object.
Effects SceneObjectList<IEffect> Gets the list of effects associated with this graphics

object.
Animations AnimationList Gets the list of animations associated with this graphic

object.
Events EventList Gets the list of events associated with this graphic

object.

Events

BeforePropertyChanged

See BeforePropertyChanged in ISceneObject Events section.

PropertyChanged

See PropertyChanged in ISceneObject Events section.

AfterPropertyChanged

See AfterPropertyChanged in ISceneObject Events section.

PropertyAnimated

See PropertyAnimated in IDynamicObject Events section.

100 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Usage

Canvas Objects

Many canvas objects have events that can trigger C# scripting code. The figure below shows an
image of the Canvas with the toolbox objects that have events available for C# scripting
highlighted.

101 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Graphics

Text

An author can add a text object to the scene by clicking the Text button of the Toolbox
panel on the left hand side of the canvas. Once added you will see the text properties on the
right hand side of the canvas.

Click on the Events tab to view the event triggers available to the text object as seen below.

102 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Clicking on the Text Changed drop down box will display the list of items that can be triggered
when the text is changed.

Check the Text1_TextChanged item under Scripting and the Text1_TextChanged() method will
be automatically added to your scene script.

From the script editor the author may enter the code to be executed when the text objects
TextChanged event is triggered see the sample below.

Sample Usage:

private void Text1_TextChanged(ISceneObject sceneObject)
{
 // Enter your code here

103 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

}
Clip

An author can add a clip to the scene by clicking the Clip button of the Toolbox panel
on the left hand side of the canvas. Once added you will see the clip properties on the right
hand side of the canvas.

Click on the Events tab to view the events triggers available to the clip as below.

Clicking on the Finished drop down box will display the list of items that can be triggered when
the clip finishes.

104 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Check the Clip1_Finished item under Scripting and the Clip1_Finished() method will be
automatically added to your scene script.

From the script editor the author may enter the code to be executed when the clip Finished
event is triggered see the sample below.

Sample Usage:

private void Clip1_Finished(ISceneObject sceneObject)
{
 // Enter your code here
}

105 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Image

An author can add a clip to the scene by clicking the Image button of the Toolbox
panel on the left hand side of the canvas. Once added you will see the image properties on the
right hand side of the canvas.

Click on the Events tab to view the event triggers available to the image object as seen below.

Clicking on the File Changed drop down box will display the list of items that can be triggered
when the images file is changed.

106 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Check the Image1_FileChanged item under Scripting and the Image1_FileChanged() method
will be automatically added to your scene script.

From the script editor the author may enter the code to be executed when the images
FileChanged event is triggered see the sample below.

Sample Usage:

private void Image1_FileChanged(ISceneObject sceneObject)
{
 // Enter your code here
}

107 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Effects

Warp

An author can add a warp effect to a scene object by clicking the Warp button of the
Toolbox panel on the left hand side of the canvas. Once added you will see the warp properties
on the right hand side of the canvas.

Click on the Events tab to view the events triggers available to the warp effect as seen below.

108 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Clicking on the Finished drop down box will display the list of items that can be triggered when
the warp effect finishes.

Check the Warp1_Finished item under Scripting and the Warp1_Finished() method will be
automatically added to your scene script.

From the script editor the author may enter the code to be executed when the warp effects
Finished event is triggered see the sample below.

Sample Usage:

private void Warp1_Finished(ISceneObject sceneObject)
{
 // Enter your code here
}
Transition

An author can add a transition effect to a scene object by clicking the Transition button

 of the Toolbox panel on the left hand side of the canvas. Once added you will see
the warp properties on the right hand side of the canvas.

109 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Click on the Events tab to view the events triggers available to the transition effect as seen
below.

110 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Transition before Update Events
Clicking on the Before Update drop down box will display the list of items that can be triggered
before the transition effect updates the associated scene object.

Check the Transition1_BeforeUpdate item under Scripting and the
Transition1_BeforeUpdate() method will be automatically added to your scene script.

From the script editor the author may enter the code to be executed when the transition effects
BeforeUpdate event is triggered see the sample below.

Sample Usage:

private void Transition1_BeforeUpdate(ISceneObject sceneObject)
{
 // Enter your code here
}

Transition after Update Events

Clicking on the After Update drop down box will display the list of items that can be triggered
before the transition effect updates the associated scene object.

111 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Check the Transition1_AfterUpdate item under Scripting and the Transition1_AfterUpdate()
method will be automatically added to your scene script.

From the script editor the author may enter the code to be executed when the transition effects
AfterUpdate event is triggered see the sample below.

Sample Usage:

private void Transition1_AfterUpdate(ISceneObject sceneObject)
{
 // Enter your code here
}
Crawl

An author can add a crawl effect to a scene object by clicking the Warp button of the
Toolbox panel on the left hand side of the canvas. Once added you will see the crawl properties
on the right hand side of the canvas.

112 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Click on the Events tab to view the events triggers available to the warp effect as seen below.

Start of Line Event
Clicking on the Start Of Line drop down box will display the list of items that can be triggered
when the crawl effect is starting a new line.

113 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Check the Crawl1_StartOfLine item under Scripting and the Crawl1_StartOfLine() method will
be automatically added to your scene script.

From the script editor the author may enter the code to be executed when the crawl effects
StartOfLine event is triggered see the sample below.

Sample Usage:

private void Crawl1_StartOfLine(ISceneObject sceneObject)
{
 // Enter your code here
}

End of Line Event

Clicking on the End Of Line drop down box will display the list of items that can be triggered
when the crawl effect is ending a line.

114 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Check the Crawl1_EndOfLine item under Scripting and the Crawl1_EndOfLine() method will
be automatically added to your scene script.

From the script editor the author may enter the code to be executed when the crawl effects
EndOfLine event is triggered see the sample below.

Sample Usage:

private void Crawl1_EndOfLine(ISceneObject sceneObject)
{
 // Enter your code here
}

115 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

End of File Event

Clicking on the End Of File drop down box will display the list of items that can be triggered
when the crawl effect reaches the end of file.

Check the Crawl1_EndOfFile item under Scripting and the Crawl1_EndOfFile() method will be
automatically added to your scene script.

From the script editor the author may enter the code to be executed when the crawl effects
EndOfFile event is triggered see the sample below.

Sample Usage:

private void Crawl1_EndOfFile(ISceneObject sceneObject)
{
 // Enter your code here
}

116 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

End of Data Event

Clicking on the End Of Data drop down box will display the list of items that can be triggered
when the crawl effect is at the end of data.

Check the Crawl1_EndOfData item under Scripting and the Crawl1_EndOfData() method will
be automatically added to your scene script.

From the script editor the author may enter the code to be executed when the crawl effects
EndOfData event is triggered see the sample below.

Sample Usage:

private void Crawl1_EndOfData(ISceneObject sceneObject)
{
 // Enter your code here
}

117 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Resources

Timer

Timer Properties

118 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Finished Event

A scene author can add a timer object to the scene by clicking the Timer button in
the Toolbox panel on the left hand side. Once added they will see the timer properties on the
right hand side of the scene canvas.

The author can then add a Finished event through the properties tab that gets triggered when
the timer ends.

Clicking on the Finished drop down box a list of items that can be triggered is presented. Check
the Timer1_Finished item under Scripting and the Timer1_Finished() method will be
automatically added to your scene script.

119 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

From the script editor the author may enter the code to be executed when the timed event is
triggered see the sample below.

Sample Usage:

private void Timer1_Finished(ISceneObject sceneObject)
{
 // Your code here
}

120 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Timed Event
A scene author can add a timed event to be triggered from the timer properties.

Clicking the button in the Timer Events property section will add an event that can be
triggered based on the time set in the Timer column. Click the Triggers next to the Time and a
list of available items that can be triggered will be displayed. Checking the
Timer1_00_01_00_00 will add the Timer1_00_01_00_00() method automatically to the scenes
script.

From the script editor the author may enter the code to be executed when the timed event is
triggered see the sample below.

Sample Usage:

private void Timer1_00_01_00_00(ISceneObject sceneObject)
{
 // Your code here
}

121 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Timer Events

122 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Finished Event
The scene author can add a Finished event through the events tab that gets triggered when the
timer finishes.

Clicking on the Finished drop down box a list of items that can be triggered is presented. Check
the Timer1_Finished item under Scripting and the Timer1_Finished() method will be
automatically added to your scene script.

From the script editor the author may enter the code to be executed when the timed event is
triggered see the sample below.

Sample Usage:

private void Timer1_Finished(ISceneObject sceneObject)
{
 // Your code here
}

123 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Started Event
The scene author can add a Started event through the events tab that gets triggered when the
timer starts.

Clicking on the Started drop down box a list of items that can be triggered is presented. Check
the Timer1_Started item under Scripting and the Timer1_Started() method will be automatically
added to your scene script.

From the script editor the author may enter the code to be executed when the timed event is
triggered see the sample below.

Sample Usage:

private void Timer1_Started(ISceneObject sceneObject)
{
 // Your code here
}

124 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Stopped Event
The scene author can add a Stopped event through the events tab that is triggered when the
timer is stopped.

Clicking on the Stopped drop down box a list of items that can be triggered is presented. Check
the Timer1_Stopped item under Scripting and the Timer1_Stopped() method will be
automatically added to your scene script.

From the script editor the author may enter the code to be executed when the timed event is
triggered see the sample below.

Sample Usage:

private void Timer1_Stopped(ISceneObject sceneObject)
{
 // Your code here
}

125 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Button Events

The button allows the click event to be handled by the scene author through scripting. Below
are the various methods for adding a button to the control panel so that the click event template
code is automatically generated and added to the C# scripting code.

Toolbox

To add a new button to the control panel the scene author can click the button in
the toolbox list that appears on the left hand side of the control panel. Once added you will see
the Button properties on the right hand side of the control panel as seen below

The button properties available to the scene author are shown below. We are interested in the
Click section, which contains the list of item that can be triggered when the button is pressed.

126 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Check the Button1_Click item under the Scripting section and the system will automatically add
the Button1_Click() method to you scenes script.

From the script editor the author may enter the code to be executed when the button is clicked
see the sample below.

Sample Usage:

private void Button1_Click(object sender, EventArgs e)
{
 // Add your code here
​ ​ ​
}

Keyframe Trigger

The keyframe triggers are available from the designer editor for all graphic objects.

127 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

To add a new keyframe that can be bound to a trigger you first move the timeline tracking icon

 to the time offset you want the keyframe added then click the add icon . These icons
are highlighted below.

You also can right click in the area below the timeline to bring up the context menu and select
Add Keyframe option.

128 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Once the keyframe has been added you will see over in the properties section below the ability
to bind this keyframe to a trigger by clicking the Triggers drop down button.

The drop down will display all the events that the keyframe can trigger. We are interested in the
Scripting option were KeyFrame1_Trigger can be checked or unchecked.

129 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Checking off the KeyFrame1_Trigger selection will automatically add the
KeyFrame1_Trigger() event handler method into the scripting code.

From the script editor the author may enter the code to be executed when the keyframe is
triggered see the sample below.

Sample Usage:

private void Keyframe1_Trigger(IKeyframe keyframe)
{
 // Add your code here
}

​

130 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Interface

There are two types of C# scripting available in PRIME. Application scripting is a single C#
script that has an application wide scope. Scene scripting has a scope of the scene. Each
scene can have its own C# script, but there is only one application script. Both scripts share
many design attributes with only a few minor differences, which will be discussed.

Scripting Editor

Scene Scripting

The C# scripting editor for the scene is available through the designer by clicking the

 toolbar button, which will display the C# scripting editor shown below.

131 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

The Editor pane is what the scene author will be working in while writing the C# script. Upon
startup for the first time the pane will contain the default code template (see below) for creating
the C# script.

Default Scene Scripting Code Template (Scene Name: NewScene)

namespace PowerBox.Scripting
{
​ using System;
​ using System.Collections.Generic;
​ using System.Drawing;
​ using System.Windows.Forms;
​ using Chyron.PowerBox.Scene.Objects;

​ public partial class NewScene1
​ {
​ ​ public NewScene1()
​ ​ {
​ ​ ​ InitializeComponent();
​ ​ }
​ }
}

Scripting Properties

To the right of the scripting panel is the properties for the script, which shows the assembly
references and error list for the code indicting syntax errors.

132 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

References

The References pane lists all the assembly references used in the script. There will be the
standard Microsoft.NET assemblies as well as PRIME assemblies. The scene author can

remove references from the list by selecting them and clicking the button from the

references toolbar. To add new references, the scene author can click the
button on the references toolbar, which will launch the Reference Manager.

Assemblies
The Assemblies option, which is the default selection and will display all system wide
Microsoft.NET assemblies installed on the system. Any assembly that has already been added
to you script will appear with a check and any assembly that can be added will appear
unchecked. Checking any unchecked entry will add the reference to your C# script and allow
access to any classes available in the selected assembly. Unchecking any assembly will result
in that assembly being removed from your script and removing access to any classes available
from that assembly. Any assemblies added and/or removed through Reference Manager will be
reflected in the References pane of the C# scripting editor and will be visible when the manager
is closed.

133 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Files
The File option if selected will display all the PRIME assemblies, as well as any additional
assemblies that the user may have loaded. The first time the user will only see the pre-selected
PRIME assemblies based on the default code template. To add new assemblies that do not
already appear on the list you can click the Browse … button to launch the standard Windows
file browse dialog. Any newly added assemblies from the file browser will be automatically
checked and added to the scripts reference list. Unchecking any assembly will result in that
assembly being removed from your script and removing access to any classes available from
that assembly. Any assemblies that are displayed in red text will indicate that the assembly dll
cannot be found.

134 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Error List

The Error List pane will display any errors that are detected in the script file. Some errors may
occur when the script editor is loaded such as assembly loading errors. These errors indicate
that the assembly referenced in the editor could not be loaded for some reason. By clicking on
the button on the toolbar the system will attempt to load the references, check the
syntax of the C# script display any errors in the Error List and indicate the number of errors

.

From the errors shown above, it indicates that a “; is expected” on line 15 in the C# script and
that MethodDoesNotExist() does not exist in the context. The scene author can double click on
the error and it will put the cursor at the beginning of the script line that caused the error.

135 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Scripting Properties

136 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Appendix

Text File Reader

Scene allows the user to select a file to be read in line by line and displayed on the Canvas
using a graphic Text object. Action is added to have a fade in and fade out effect.

Canvas

Object Name Description
Text MyTextObject Used to display

text from the
file.

Control Panel

Object Name Description
Button StartButto

n
Used to start and stop
the file reading.
Events
Click
StartButton_Click

FilePic
ker

TextFilePic
ker

Used to select file from
the file system.
Events
FileChanged
TextFilePicker_FileCha
nged

TextBo
x

LineTextB
ox

Used to display the
text that is being
displayed in Canvas.
Binding
LineTextObject.Text

Action FadeActio
n

Used to have the text
fade in and fade out.
Trigger
LineTextObject.TextCh
anged

137 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Script

To get the file to be read each time the action is done using a Timer object by setting the interval
to the FadeAction’s length in milliseconds. The timer is then set to AutoReset so that after an
Elapsed event is triggered it will restart automatically. We register the OnTimerElapsed() event
handler to the timers Elapsed event but we don’t start the timer yet. The file to be read is
selected by using the FilePicker control on the control panel. Once a valid file is selected,
clicking button will open a file stream for reading, read the first line, start the timer and change
the buttons text to “Stop”. Clicking the button when is read “Stop” will stop the timer, close the
file and change the buttons text back to “Start”.

namespace PowerBox.Scripting
{
​ using System;
​ using System.Collections.Generic;
​ using System.Drawing;
​ using System.Windows.Forms;
​ using Chyron.PowerBox.Scene.Objects;
​ using Chyron.Enterprise.Infrastructure.Parameters;
​ using System.IO;
​ using System.Timers;

​ public partial class TextFileReader
​ {
​
​ ​ private string filePath;
​ ​ private System.Timers.Timer timer;
​ private StreamReader reader;
​ ​
​ ​ public TextFileReader()
​ ​ {
​ ​ InitializeComponent();
​ ​ ​
​ ​ StartButton.Enabled = false;
​ ​ ​
​ ​ timer = new System.Timers.Timer((double)(Action1.Length.Seconds*1000));
​ ​ timer.AutoReset = true;
​ ​ ​
​ ​ timer.Elapsed += OnTimerElapsed;
​ ​ }
​
​ ​ // Handles the Elapsed event from the timer​
​ ​ private void OnTimerElapsed(object sender, ElapsedEventArgs e)
​ ​ {
​ ​ ReadNextLine();
​ ​ }
​ ​
​ ​ //Handles the FileChanged event from the FilePicker
​ ​ private void TextFilePicker_FileChanged()
​ ​ {
​ ​ TextFilePicker.ForeColor = Color.Black;
​
​ ​ filePath = TextFilePicker.File;
​ ​ ​
​ ​ StartButton.Enabled = (!string.IsNullOrWhiteSpace(filePath) &&
 File.Exists(filePath));

138 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

​ ​
​ ​ }
​ ​
​ ​
​ ​ // Reads the next line from the file and updates the LineTextObject's Text property
​ ​ private void ReadNextLine()
​ ​ {
​ ​ if (reader != null)
​ ​ {
​ ​ if (! reader.EndOfStream)
​ ​ {
​ ​ var line = reader.ReadLine();
​ ​ ​ ​
​ ​ LineTextObject.Text = line;
​ ​ }​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ }
​ ​ }
​ ​
​ ​ // Handles the Click event for the StartButton
​ ​ private void StartButton_Click(object sender, EventArgs e)
​ ​ {

​ ​ if (StartButton.Text == "Start")
​ ​ {
​ ​ ​
​ ​ if (File.Exists(filePath))
​ ​ {
​ ​ ​ ​
​ ​ ​ try
​ ​ ​ {
​ ​ ​ ​ reader = new StreamReader(new FileStream(filePath, FileMode.Open));
​ ​ ​ }
​ ​ ​ catch (Exception ex)
​ ​ ​ {
​ ​ ​ ​ TextFilePicker.ForeColor = Color.Red;
​ ​ ​ this.Scene.LogError(ex.Message);
​ ​ ​ ​ return;
​ ​ ​ }
​ ​ ​ ​ ​
​ ​ }

​ ​ ReadNextLine();

​ ​ timer.Start();
​ ​ ​ ​
​ ​ StartButton.Text = "Stop";
​ ​ }
​ ​ else
​ ​ {
​ ​ timer.Stop();
​ ​ ​ ​
​ ​ if (reader != null)
​ ​ {
​ ​ ​ reader.Close();
​ ​ ​ reader = null;
​ ​ }

​ ​ StartButton.Text = "Start";
 }

139 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

​ }
​ }
}

Side Show

Scene allows the user to select a file that contains a list of images or a directory that contains
images to be read one at a time and display the image on the canvas. A fade in / fade out action
on the Canvas using a graphic Text object. Action is added to have a fade in and fade out effect.

Canvas

Object Name Description
Image SlideImage Used to

display the
image on the
canvas.

Text SlideImageName Used to
display the
image name
on the
canvas.

Control Panel

Objec
t

Name Description

Butto
n

ButtonSlide
Show

Used to start and stop
the slide show.
Events
Click
ButtonSlideShow_Clic
k

TextB
ox

ImageFileTe
xtBox

Use to display the
image filename.

TextB
ox

ImageFolde
rTextBox

Used to enter or
display the folder to
search for images.
Events
TextChanged
ImageFolderTextBox_
TextChanged

FilePic
ker

ImageListFil
ePicker

Used to select the file
containing a list of
images to be used,
Events

140 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

FileChanged
ImageListFilePicker_Fi
leChanged

Butto
n

BrowserBut
ton

Used to launch the
folder browser to
select the directory to
search for images.
Events
Click
BrowserButton_Click

Actio
n

FadeAction Used to have the
image fade in and
fade out.
Trigger
SlideImage.FileChang
ed

Param
eter

ButtonStart
Text

Contains the text to
be displayed on the
ButtonSlideShow to
indicate it will Star the
slide show.

Param
eter

ButtonStop
Text

Contains the text to
be displayed on the
ButtonSlideShow to
indicate that it will
Stop the slide show.

Param
eter

ImageExten
sions

Contains a commas
delimited list of valid
image file extensions.

​
Script

This script uses some advance features such as threading to perform the actions required. The
image list is created as a stack so that it is processed only once as each item is popped off and
displayed. The list is created when the StartButton is clicked and the Tag property is equal to
SlideShowOptions.Start enumeration value. The control panel’s controls that are used by the
slide show process are disabled so that entries cannot be changed while the list is being
processed. The image list is either generated using the image text file, which contains a list of
images and their paths or a directory that contains images. A separate thread is started to
perform the read so that other actions can be done without interruption. When the list of images
has been exhausted the control panels state is set back so that a new slide show can be
performed. At any point, while the image list is being processed the StartButton may be clicked
to Stop and reset the control panel back.

namespace PowerBox.Scripting
{

141 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

​ using System;
​ using System.Collections.Generic;
​ using System.Drawing;
​ using System.Windows.Forms;
​ using Chyron.PowerBox.Scene.Objects;
​ using Chyron.PowerBox.Scene.Controls;
​ using Chyron.PowerBox.Scene.Text;
​ using System.Linq;
​ using System.IO;
​
​ public partial class SlideShow
​ {
​ ​
​ ​ private enum SlideShowOptions
​ ​ {
​ ​ ​ Start,
​ ​ ​ Stop
​ ​ };
​

​ ​ private bool allfiles = false;
​ ​ private string filePath;
​ ​
​ ​ private bool cancel = false;
​ ​ private Stack<string> imageList = new Stack<string>();
​ ​ private string startText = "Start Slide Show";
​ ​ private string stopText = "Stop Slide Show";
​ ​ private string [] extensions = new string [0];
​ ​ private System.Windows.Forms.FolderBrowserDialog folderBrowser =

new System.Windows.Forms.FolderBrowserDialog();
​
​ ​ public SlideShow()
​ ​ {
​ ​ InitializeComponent();
​
​ ​ ButtonSlideShow.Enabled = false;
​ ​ ​
​ ​ InitializeScript();
​ ​ ​
​ ​ ​
​ ​ }
​
​ ​ // initialize the script
​ ​ private void InitializeScript()
​ ​ {
​ ​
​ ​ var parameter = Scene.Parameters.Find("ButtonStartText");
​ ​ if (parameter != null)
​ ​ {
​ ​ ​ startText = parameter.Value as string;
​ ​ }
​
​ ​ parameter = Scene.Parameters.Find("ButtonStopText");
​ ​ if (parameter != null)
​ ​ {
​ ​ ​ stopText = parameter.Value as string;
​ ​ }
​
​ ​ extensions = ImageExtensions.Value.ToLower().Split(new char[] { ',' });

142 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

​ ​
​ ​ allfiles = extensions.Contains("*") || extensions.Contains("*.*");
 ​ ButtonSlideShow.Text = startText;
​ ​ ButtonSlideShow.Tag = SlideShowOptions.Start;
​
​ ​ ImageFileTextBox.Text = "";
​ ​ Scripting.File = "";
​ ​ Scripting.Opacity = 0;

​ ​ }
​
​ ​ // Creates the image list from either the directory or the image list file
​ ​ private void CreateImageList()
​ ​ {
​ ​ imageList.Clear();
​
​ ​ BrowseButton.Enabled = f
​ ​ ImageFileTextBox.Text = "Creating Image List";
​ ​ ​
​ ​ if (File.Exists(filePath))
​ ​ {
​ ​ using (StreamReader reader = new StreamReader(filePath))
​ ​ {
​ ​ ​ while (!reader.EndOfStream)
​ ​ ​ {
​ ​ ​ var line = reader.ReadLine();
​ ​ ​
​ ​ ​ AddImageFile(line);
​ ​ ​ }
​ ​ }
​
​ ​ }
​ ​ else if (Directory.Exists(filePath))
​ ​ {
​ ​ foreach (var file in Directory.GetFiles(filePath, "*.*"))
​ ​ {
​ ​ ​ AddImageFile(file);
​ ​ }
​ ​ }
​ ​ }
​ ​
​ ​ // Add image file to the stack
​ ​ private void AddImageFile(string file)
​ ​ {
​ ​ // image files extension
​ ​ var extension = System.IO.Path.GetExtension(file);
​ ​
​ ​ // image file must exist and its extension must be allowed
​ ​ if (File.Exists(file) && (allfiles ||
 (!allfiles && extension.Contains(extension))))
​ ​ {
​ ​ imageList.Push(file);
​ ​ }

​ ​ }
​
​ ​ // Enables the slide show
​ ​ private void EnableSlideShow()
​ ​ {

143 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

​ ​
​ ​ // make sure we are executing on the GUI thread
​ ​ if (this.InvokeRequired)
​ ​ {
​ ​ Invoke(new Action(EnableSlideShow));
​ ​ }
​ ​ else
​ ​ {
​ ​ ​
​ ​ SlideImageName.Text = "";
​ ​ Scripting.Opacity = 0;

​ ​ ImageFileTextBox.Text = "";

​ ImageFileTextBox.Enabled = true;
BrowserButton.Enabled = true;​ ​ ​ ​
ImageListFilePicker.Enabled = true;

 ​ ButtonSlideShow.Enabled = true;
​ ​ ButtonSlideShow.Text = startText;
​ ​ ButtonSlideShow.Tag = SlideShowOptions.Start;
​ ​ ButtonSlideShow.BackColor = Color.LightSteelBlue;

​ ​ Log("");
​ ​ }
​ ​
​ ​ }
​
​ ​ // Handle the button click event for the slide show
​ ​ private void ButtonSlideShow_Click(object sender, EventArgs e)
​ ​ {
​ ​
​ ​ var option = (SlideShowOptions)ButtonSlideShow.Tag;
​ ​
​ ​ if (option == SlideShowOptions.Start)
​ ​ {
​ ​
​
​ ​ ​ ​
​ ​ ​ CreateImageList();
​ ​
​ ​ ​ if (imageList.Count > 0)
​ ​ ​ {
​ ​ ​ cancel = false;
​ ​
​ ​ ​ ButtonSlideShow.BackColor = Color.Red;

​ ​ ImageFileTextBox.Enabled = false;
​ ​ BrowserButton.Enabled = false;
​ ​ ImageListFilePicker.Enabled = false;
​
​ ​ ​ ButtonSlideShow.Text = stopText;
​ ​ ​ ButtonSlideShow.Tag = SlideShowOptions.Stop;
​ ​
​ ​
​ ​ ​ System.Threading.Tasks.Task.Factory.StartNew(()=>
​ ​ ​ {

144 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

​ ​ ​ ​ while (imageList.Count > 0 && !cancel)
​ ​ ​ ​ {
​ ​ ​ ​ var image = imageList.Pop();
​ ​ ​ ​ if (System.IO.File.Exists(image))
​ ​ ​ ​ {
​ ​ ​ ​ ImageFileTextBox.Text = image;
​ ​ ​ ​ Scripting.File = image;
​ ​ ​ ​ SlideImageName.Text =
 System.IO.Path.GetFileNameWithoutExtension(image);
​ ​ ​ ​ }
​ ​
​ ​
​ ​ ​ ​ System.Threading.Thread.Sleep(FadeAction.Length.TimeSpan);
​ ​
​ ​
​ ​ ​ ​ }
​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ if (cancel)
​ ​ ​ ​ {
​ ​ ​ ​ FadeAction.Stop();

​ ​ ​ ​ Log("Slideshow cancelled");
​ ​ ​ ​ }
​ ​ ​ ​ else
​ ​ ​ ​ Log("Slideshow done");

​ ​ ​ ​ EnableSlideShow();
​ ​
​ ​ ​ });
​ ​ ​ }
​ ​
​ ​ }
​ ​ else
​ ​ {
​ ​ ButtonSlideShow.BackColor = Color.Gray;
 ​ ButtonSlideShow.Enabled = false;
​ ​ cancel = true;
​ ​
​ ​ }
​ ​
​ ​ }
​ ​
​ ​ // Handles the TextChanged event for the ImageFolderTextBox control
​ ​ private void ImageFolderTextBox_TextChanged(object sender, EventArgs e)
​ ​ {
​ ​ if (Directory.Exists(ImageFolderTextBox.Text))
​ ​ {
​ ​ filePath = ImageFolderTextBox.Text;
​ ​ ImageListFilePicker.File = "";
​ ​ ButtonSlideShow.Enabled = true;
​ ​ }
​ ​ else
​ ​ {
​ ​ if (File.Exists(ImageListFilePicker.File))
​ ​ {
​ ​ ButtonSlideShow.Enabled = true;
​ ​ }
​ ​ else

145 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

​ ​ {
​ ButtonSlideShow.Enabled = false;

​ ​ ​ filePath = "";
​ ​ }​
​ ​ }

​ ​ }
​ ​
​ ​ // Handles the Click event for the BrowseButton control
​ ​ private void BrowserButton_Click(object sender, EventArgs e)
​ ​ {
​ ​ folderBrowser.Description = "Select Image Directory";
​ ​ folderBrowser.ShowNewFolderButton = false;
​ ​ ​
​ ​ if (folderBrowser.ShowDialog(this) == System.Windows.Forms.DialogResult.OK)
​ ​ {
​ ​ ImageFolderTextBox.Text = folderBrowser.SelectedPath;
​ ​ }
​ ​ }
​ ​
​ ​ // Handles the FileChanged event from the ImageListFilePicker control
​ ​ private void ImageListFilePicker_FileChanged()
​ ​ {
​ ​ if (File.Exists(ImageListFilePicker.File))
​ ​ {
​ ​ filePath = ImageListFilePicker.File;
​ ​ ImageFolderTextBox.Text = "";
​ ​ ButtonSlideShow.Enabled = true;

​ ​ }
​ ​ else
​ ​ {
​ ​ if (Directory.Exists(ImageFolderTextBox.Text))
​ ​ {
​ ​ ButtonSlideShow.Enabled = true;
​ ​ }
​ ​ else
​ ​ {
​ ​ ButtonSlideShow.Enabled = false;
​ ​ filePath = "";
​ ​ }
​ ​ ​ ​
​ ​ }
​ ​ }
​ }
​
 }

146 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

VB-JSCRIPT
PRIME also includes support for VBScript and JScript. The common API can be utilized to
interact with and control the playback of scenes.

The Model

There is only one PRIME application instance running on a system at a time. The application
services each request through the API, providing the ability to retrieve and modify the state of
scenes within the currently selected project.

The Scene is the basic PRIME structure, containing multiple graphical and hardware elements
called Objects as well as Controls that define an interface to configurable aspects of the
scene. Scenes also contain one or more Actions, which define object animations, and may be
triggered through the scripting API. Currently the actions do not expose their underlying
keyframes and associated properties, though this may be added in future revisions of the API.

Each scene also has a collection of customizable User Parameters, which allows scripts to
store and retrieve context information at runtime.

Script Execution and Context

Scripts associated with a scene at design time are executed in-process. In-process scripts are
provided context and a handle on the PRIME COM API in the form of global keywords that are
accessible from the script (see Global Keywords).​
​
When PRIME is running with administrator privileges, scripts may also be executed out of
process (e.g. by double-clicking a VBS file on the Windows desktop or from a VBScript editor),
although these scripts must tap into the PRIME COM API differently since they have no local
context:

Dim Prime​
Set Prime = CreateObject("Prime", "localhost")

Future revisions of scripting may include a DCOM implementation so that scripts will have
access to the PRIME API from any COM environment even if the PRIME application has not
been started.

​
Scene Designer

The user may incorporate scripts using VBScript or JScript by adding a Script resource to their
scene. The resource can be added by clicking the Script button in the Designer Toolbox as seen
below:

147 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Once added, the Script resource may be customized in a variety of ways, but the most important
configuration decision is deciding how script execution will occur. The Mode property dictates
whether scripts will execute when keyframes animate or in response to designated scene
events.

Script resources default to Timeline mode, indicating that the object will execute the selected file
at designated keyframes on the timeline. Each of the other properties listed are keyframeable;
consequently, a single Script resource may be used to execute multiple script files: each
keyframe will a different file property affected.

●​ File: The VBScript or JScript file that will be executed. Browsing for a file will initially
suggest files local to the current project, but the user may opt to select a completely
external file.

●​ Synchronization: This property specifies whether the script will be executed
synchronously or asynchronously. Synchronous script execution can impede the
execution of other scripts however this may be preferable and is the default behavior.
Asynchronous script executions may occur concurrently.

●​ Context: Indicates whether the script will be executed In Process (with context of the
executing scene) or Out of Process (no context). Generally, scripts that will interact with

148 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

the PRIME API should be executed In Process. Scripts that don’t require the PRIME
API, such as those that download data on some interval should be executed Out of
Process.

●​ Timeout: Indicates how long a script should allow for execution before timing out (and
forcibly terminated). This property is used to prevent long-running scripts from interfering
with playout operation or performance.

Scripts in this mode may also be triggered in the standard PRIME trigger list control as typically
seen when configuring object or scene events. For example, a button control can be added and
configured to execute a Script resource as seen below.

This would execute the script file as configured on the default keyframe of the resource.

Alternatively, the Mode property can be changed to Event Driven. Additional properties become
available when this value is set.

149 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

●​ Start Event: Indicates the type of event that will cause the script to execute.​

o​ Never: Script execution is disabled.
o​ After Close: The script will execute after the scene is closed.
o​ After Load: The script will execute after the scene is loaded.
o​ After Play: The script will execute after the scene is taken to air.
o​ After Stop: The script will execute after the scene is transferred off air.
o​ After Update: The script will execute after a specific property of a particular object

has changed.​
​

o​ Before Close: The script will execute before the scene is closed.
o​ Before Play: The script will execute before the scene is taken to air.

150 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

o​ Before Stop: The script will execute before the scene is transferred off air.
o​ Before Update: The script will execute before a specific property of a particular

object has changed. The executing script may change the value prior to its
application.

o​ While Playing: The script will execute only when the scene is on air.​

●​ Interval: If enabled, specifies that the script should execute repeatedly on a defined
interval (in seconds). For example, the user could configure a script that executes every
five seconds while on air by setting the Start Event to While Playing and the checking
the Interval property.

151 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Object Hierarchy

152 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Global Keywords

Below are reserved keywords that may be used by an in-process script to reference the PRIME
API.

ActiveScene

Returns the scene currently executing the script.

Sample Usage: ​
​
ActiveScene.Play ' Play the current scene

Prime

Returns a top-level object that can be used to interact with the currently running PRIME. This
object is particularly useful for cross-scene scripting, meaning that a script in one scene can
affect the state of other scenes.

Sample Usage: ​
​
Dim scene​
Set scene = Prime.Scene("1") ' Active scene might not be 1​
​
scene.Play

Parameters

Returns a collection of script parameters that contains useful information about the script being
executed. Currently, only four parameters are possible: Control Name, Control Value, Id and
Script Name.

Whenever a script is executed from PRIME, the script is provided with a collection of
parameters that may be of use to the executing script. Under most situations, this is currently
limited to the identifier of the scene (Id) that caused execution of the script as well as the name
associated with the executing script (Script Name), however, when a script executes as a result
of an update to a control panel control, two additional parameters are made available.

Script
Param
eter

Example
VBScript
Usage

Available When? Read
only?

Id Parameter.Item(
"Id")

Always Yes

Contr
ol
Name

Parameter.Item(
"Control Name")

Before, After Update Yes

153 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Contr
ol
Value

Parameter.Item(
"Control Value")

Before, After Update No

Script
Name

Parameter.Item(
"Script Name")

Always Yes

​
It may be desirable to execute a script that can transform an incoming data value before
applying the value to a control panel control. This can be accomplished by adding a Script
resource to the scene in Event Driven mode, marking the Execute Script property Before
Update and setting the Target property to the desired control. At this point, the script will
execute immediately before a value is applied to the target control, allowing the script author to
intercept the value and make any desired modifications.

Modifying the incoming value requires that the Control Value parameter is used. Simply set the
value of the Script Parameter as seen below:

Parameter.Item("Control Value") = "New Value"

In the example above, New Value will be applied to the control after the script completes
executing instead of the original value.

154 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

API Reference

Prime

The global keyword Prime returns an application proxy, which provides hooks into the PRIME
API. This is the top level object that allows a script author to interact with scenes in the currently
selected project.​

AllScenes

Returns a collection of all scenes in the currently selected project.

Sample Usage:

Dim scene​
' Iterate through each scene
For i = 0 to Prime.AllScenes.Count – 1​
​ ' Here we can do something with each scene.​
​ Set scene = Prime.AllScenes.Item(i)
​ ' For example, show a message box with the scene ID.
​ MsgBox scene.SceneId
Next

OpenScenes

Returns a collection of all scenes that are currently open in the selected project.

Sample Usage:

Dim scene​
' Iterate through each open scene
For i = 0 to Prime.OpenScenes.Count – 1​
​ ' Here we can do something with each scene.​
​ Set scene = Prime.OpenScenes.Item(i)
​ ' For example, show a message box with the scene ID.
​ MsgBox scene.SceneId
Next

Parameters

Returns a collection of project parameters which are thus independent of scenes. Currently only
two parameters are available by default:

Parameter
Name

Example VBScript Usage Value?

Last Automation
Command Text Prime.Parameter.Item("Last Automation Command Text")

Command text of the
most recently received

Intelligent Interface
command.

155 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Last Automation
Command Time Prime.Parameter.Item("Last Automation Command Time")

The date/time when the
last Intelligent Interface
command was received.

​
For additional details on using the parameter collection, see the Parameters section.

Scene(id As String)

Returns a scene with the specified name, if one can be found. If the scene exists in the project,
then that scene will be returned. If a matching scene cannot be found, then Nothing is
returned.

Sample Usage:

Dim scene
Set scene = Prime.Scene("1")

' Check if the scene was returned
If Not(scene is Nothing) Then
​ MsgBox "The scene was returned!"
Else
​ MsgBox "Failed to get scene!"
End If

​

SceneExists(id As String)

Returns true if a scene with the specified name exists in the current PRIME project. Otherwise,
returns false.

Sample Usage:

If Prime.SceneExists("1") Then
​ MsgBox "The scene was found!"
Else
​ MsgBox "The scene was not found!"
End If

SceneCollection

A collection of scenes returned by either Prime.AllScenes or Prime.OpenScenes.​

Count

The number of scenes in the collection.

Sample Usage:

' Display the number of open scenes
MsgBox Prime.OpenScenes.Count

156 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Item(index)

Returns a scene at the specified index in the collection.

Sample Usage:

Dim scene​
' Iterate through each scene
For i = 0 to Prime.AllScenes.Count – 1​
​ ' Here we can do something with each scene.​
​ Set scene = Prime.AllScenes.Item(i)
​ ' For example, show a message box with the scene ID.
​ MsgBox scene.SceneId
Next

CloseAll

Closes all scenes in the scene collection.

Sample Usage:

Prime.AllScenes.CloseAll

StopAll

Stops all scenes in the scene collection.

Sample Usage:

Prime.AllScenes.StopAll

157 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Scene

Although scripting in PRIME can be used without involving the PRIME API, perhaps the most
powerful use of the feature is for interacting with scenes in the project. Use of the PRIME API
allows a script author the ability to affect the state of scenes, store and retrieve context
information for later use by other scenes or scripts, and a plethora of other features.

Scenes may be referenced by the script author in one of two ways.

1.​ The global ActiveScene keyword returns the scene that is currently executing the script.
This keyword may be used anywhere in the script.

ActiveScene.Play ' Play the current scene

2.​ The global Prime keyword can be used to access any scene in the Prime database.

Prime.Scene("1").Play ' Play scene with ID 1

Close

Closes the scene, if the scene is not already closed.

Sample Usage:

Dim scene
Set scene = Prime.Scene("1")

scene.Close

Control(name)

Returns a control panel control with the specified name, if the scene’s control panel contains
one. If a matching control cannot be found, then Nothing is returned. An exception will be
thrown if this property is accessed before the scene has been opened.

Sample Usage:

Dim control
Set control = ActiveScene.Control("Text Box 1")

' Check if the control was returned
If Not(control is Nothing) Then
​ MsgBox "The control was returned!"
Else
​ MsgBox "Failed to get control!"
End If

158 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Controls

Returns a collection of all control panel controls found in the specified scene. An exception will
be thrown if this property is accessed before the scene has been opened.

Sample Usage:

Dim scene, control​
Set scene = ActiveScene​
​
' Iterate through each control in the control panel
For i = 0 to scene.Controls.Count – 1​
​ ' Here we can do something with each control.​
​ Set control = scene.Controls.Item(i)
​ ' For example, show a message box with the control name.
​ MsgBox control.Name
Next

Load

Loads the scene regardless of its state.

Sample Usage:

Dim scene
Set scene = Prime.Scene("1")

scene.Load

Object(name As String)

Returns for an object with the specified name, if the scene contains one. If a matching object
cannot be found, then Nothing is returned. An exception will be thrown if this property is
accessed before the scene has been opened.

Sample Usage:

Dim sceneObject
Set sceneObject = ActiveScene.Object("Text 1")

' Check if the object was returned
If Not(sceneObject is Nothing) Then
​ MsgBox "The object was returned!"
Else
​ MsgBox "Failed to get object!"
End If

159 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Objects

Returns an enumeration of all objects in the specified scene. An exception will be thrown if this
property is accessed before the scene has been opened.

Sample Usage:

Dim scene, object​
Set scene = ActiveScene​
​
' Iterate through each object in the scene
For i = 0 to scene.Objects.Count – 1​
​ ' Here we can do something with each object.​
​ Set object = scene.Objects.Item(i)
​ ' For example, show a message box with the object name.
​ MsgBox object.Name
Next

Open

Opens the scene, re-opening the scene if it is already open.

Sample Usage:

Dim scene​
Set scene = Prime.Scene("1")

scene.Open

Parameters

Returns a collection of user parameters currently associated with the scene. For additional
details on working with parameters, see the Parameters section.

Play​

Plays the scene regardless of its state. If the scene is already playing, the scene will first be
stopped and then replayed.

Sample Usage:

Dim scene
Set scene = Prime.Scene("1")

scene.Play

160 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

SceneId

Returns the name of this scene. Aliasing functionality previously available in Channel Box is no
longer supported.

Sample Usage:

Dim scene
Set scene = ActiveScene
​
MsgBox scene.SceneId

SceneState

Gets an integer indicating the current state of this scene.

●​ 2 if the scene is closed
●​ 4 if the scene is loaded
●​ 8 if the scene is loading currently
●​ 16 if the scene is opened
●​ 32 if the scene is playing

Sample Usage:

Dim scene
Set scene = Prime.Scene("1")

' Check if the scene is playing
If scene.SceneState = 32 Then
​ ' Playing, so stop the scene
​ scene.Stop
Else
​ ' Not playing, so play the scene
​ scene.Play
End If

Stop

Stops the scene, if it is playing.

Sample Usage:

Dim scene
Set scene = Prime.Scene("1")

scene.Stop

Control

Each scene has a set of controls that are collectively referred to as the control panel. These
controls are exposed to scripting, providing specialized properties and functions pertinent to
each control type. All controls have two common properties, however, that can be used to

161 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

identify the control and its supported functionality.​

Name

​
Returns the name of this control.

Sample Usage:

Dim control
Set control = ActiveScene.Control("Button 1")

' Check if the control was returned
If Not(control is Nothing) Then
​ MsgBox control.Name
Else
​ MsgBox "Failed to get the control!"
End If

Type

Gets an integer indicating the type of this control. Currently labels, group boxes, and video
proxies are unavailable through the API.

●​ 2 if the control is a button
●​ 3 if the control is a check box
●​ 4 if the control is a combo box
●​ 5 if the control is a file picker
●​ 10 if the control is a radio button
●​ 11 if the control is a rich text editor
●​ 12 if the control is a numeric up/down.
●​ 13 if the control is a text box
●​ 14 if the control is a time code editor

Sample Usage:

Dim scene, control​
Set scene = ActiveScene​

For i = 0 to scene.Controls.Count – 1​
​ Set control = scene.Controls.Item(i)

​ ' Only display the names of TextBoxes
​ If control.Type = 13 Then
​ ​ MsgBox control.Name
​ End If
Next

162 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Button

The Button can be used to interact with a control panel button.​

Pressed

For state buttons, this property may be used to change or retrieve the current state of the
button. True values correspond to the button being on, while false indicates that the button is off.
For standard push buttons, this property may be used to simulate a button press by setting the
value to true. This property will always return false for push buttons and setting its value to false
should have no effect.

Sample Usage:

Dim button
Set button = ActiveScene.Control("Button 1")

If Not(button is Nothing) Then
​ ' Check if state button is pressed
​ If button.Pressed Then
​ ​ ' It is, so reset the button!
​ ​ button.Pressed = False
​ End If
Else
​ MsgBox "Failed to get the button!"
End If

163 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

CheckBox

The CheckBox can be used to interact with a control panel check box. ​

Checked

This property returns true if the check box is currently checked, otherwise false. The property
may also be used to set the state of the check box.

Sample Usage:

Dim checkbox
Set checkbox = ActiveScene.Control("Check Box 1")

If Not(checkbox is Nothing) Then
​ ' Check if state check box is checked
​ If checkbox.Checked Then
​ ​ ' It is, so uncheck the checkbox!
​ ​ checkbox.Checked = False
​ End If
Else
​ MsgBox "Failed to get the checkbox!"
End If

ComboBox

The ComboBox can be used to interact with a control panel combo box. ​

ItemCount

Returns the number of items in the combo box drop down.

Sample Usage:

Dim combobox
Set combobox = ActiveScene.Control("Combo Box 1")

If Not(combobox is Nothing) Then
​ MsgBox "There are " + combobox.ItemCount + " items in the combo box"
Else
​ MsgBox "Failed to get the combo box!"
End If

Items

Returns an enumeration of the items in the combo box drop down. Each item corresponds to a
text string visible in the drop down.

Sample Usage:

Dim combobox
Set combobox = ActiveScene.Control("Combo Box 1")

164 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

If Not(combobox is Nothing) Then
For Each item in combobox.Items

​ ​ MsgBox "Item: " + item
Next

End If

SelectedItem

Gets or sets the text string of the item currently selected in the combo box. You may only set a
value using a text string that already exists in the combo box. All other updates to the selected
item will be ignored.

Sample Usage:

Dim combobox
Set combobox = ActiveScene.Control("Combo Box 1")

If Not(combobox is Nothing) Then
​ MsgBox "Selected Item: " + combobox.SelectedItem

​ ' Now change the selected item
​ ' This update only works if Item 2 exists in the combo box
​ combobox.SelectedItem = "Item 2"
End If

GetItemValue(item)

Each item in a combo box may have an underlying value associated with it; for example, a
combo box may display a shorter text string that may actually refer to a full file path. This
function may be used to retrieve the actual value when given the visible item value. If this
function is passed a text string that does not exist in the combo box, then Nothing is returned.

Sample Usage:

Dim combobox
Set combobox = ActiveScene.Control("Combo Box 1")

If Not(combobox is Nothing) Then
​ MsgBox "Selected Item: " + combobox.SelectedItem

​ ' Now display the actual value, which may be different
​ MsgBox "Selected Item Value: " + combobox.GetItemValue(combobox.SelectedItem)
End If

165 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

FilePicker

The FilePicker can be used to interact with a control panel file picker. ​

Path

Gets or sets the file path currently in the file picker control.

Sample Usage:

Dim filepicker
Set filepicker = ActiveScene.Control("File Picker 1")

If Not(filepicker is Nothing) Then

​ MsgBox "Current File Path: " + filepicker.Path

​ filepicker.Path = "C:\Test.jpg"

Else
​ MsgBox "Failed to get the filepicker!"

End If​

166 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

RadioButton

The RadioButton can be used to interact with a control panel radio button. ​

Selected

This property returns true if the radio button is currently selected, otherwise false. The property
may also be used to set the state of the radio button.

Sample Usage:

Dim radiobutton
Set radiobutton = ActiveScene.Control("Radio Button 1")

If Not(radiobutton is Nothing) Then
​ ' Check if state radio button is selected
​ If radiobutton.Selected Then
​ ​ ' It is, so reset the radiobutton!
​ ​ radiobutton.Selected = False
​ End If
Else
​ MsgBox "Failed to get the radio button!"
End If

167 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

RichTextEditor

The RichTextEditor can be used to interact with a control panel rich text editor. ​

Text

Gets or sets the text currently in the rich text editor control.

Sample Usage:

Dim texteditor
Set texteditor = ActiveScene.Control("Rich Text Editor 1")

If Not(texteditor is Nothing) Then
​ MsgBox "Current Text: " + texteditor.Text

​ texteditor.Text = "Hello, Goodbye"
Else
​ MsgBox "Failed to get the text editor!"
End If

168 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Numeric Up/Down

The Spinner can be used to interact with a control panel numeric up/down.​

Value

Gets or sets the integer value currently in the numeric up/down control.

Sample Usage:

Dim spinner
Set spinner = ActiveScene.Control("Spinner 1")

If Not(spinner is Nothing) Then
​ MsgBox "Current Value: " + spinner.Value

​ spinner.Value = 100
Else
​ MsgBox "Failed to get the spinner!"
End If

169 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

TextBox

The TextBox can be used to interact with a control panel text box. ​

Text

Gets or sets the text currently in the text box control.

Sample Usage:

Dim textbox
Set textbox = ActiveScene.Control("Text Box 1")

If Not(textbox is Nothing) Then
​ MsgBox "Current Text: " + textbox.Text

​ textbox.Text = "Hello, Goodbye"
Else
​ MsgBox "Failed to get the textbox!"
End If

170 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

TimeCodeEditor

The TimeCodeEditor can be used to interact with a control panel time code editor.​

Duration

Gets or sets the current value of the time code editor in the form “HH:MM:SS”.

Sample Usage:

Dim timeCodeEditor
Set timeCodeEditor = ActiveScene.Control("Time Code Editor 1")

If Not(timeCodeEditor is Nothing) Then
​ MsgBox "Current Duration: " + timeCodeEditor.Duration

​ timeCodeEditor.Duration = "10:20:30"
Else
​ MsgBox "Failed to get time code editor!"
End If

Frames

Gets or sets the number of frames currently specified by the value currently in the time code
editor control. This value depends on the frame rate used by the scene.

Sample Usage:

Dim timeCodeEditor
Set timeCodeEditor = ActiveScene.Control("Time Code Editor 1")

If Not(timeCodeEditor is Nothing) Then
​ MsgBox "Current Frames: " + timeCodeEditor.Frames

​ timeCodeEditor.Frames = 100
Else
​ MsgBox "Failed to get time code editor!"
End If

171 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Object

Each scene contains a collection of graphical and hardware elements called Objects, such as
crawls and images, which are exposed to scripting using the Objects enumeration or Object
function of a scene. Currently only object names are exposed, although additional functionality
may be added in the future.​

Name

Returns the name of this object.

Sample Usage:

Dim sceneObject
Set sceneObject = ActiveScene.Object("Text")
​
MsgBox sceneObject.Name ' Should display Text

172 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Action

The Action can be used to interact with an animation of a scene. Actions can be accessed and
used to trigger their underlying actions as follows:

Sample Usage:

Dim sceneAction
Set sceneAction = ActiveScene.Action("Hide")

sceneAction.Trigger 'Hide will be triggered

​

Name

Returns the name of this action, as apparent in the Prime Scene Builder at design time.

Sample Usage:

Dim sceneAction
Set sceneAction = ActiveScene.Action("Hide")

MsgBox sceneAction.Name ' Hide

Trigger

Triggers this action.

Sample Usage:

Dim action
Set sceneAction = ActiveScene.Action("FadeOff")

' Check if the action was returned
If Not(sceneAction is Nothing) Then
​ ' Activate the animation
​ sceneAction.Trigger
Else
​ MsgBox "Failed to get an action!"
End If

173 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Parameters

Scene authors can store and retrieve contextual information through the PRIME Scripting API
by using either the top level PRIME project parameter collection (available as Prime.Parameters)
or the parameter collection of a particular scene (available either through ActiveScene.Parameters
or Prime.Scene("1").Parameters). The difference between the two styles is that the PRIME
parameter collection persists as long as the application is running (or until the current project is
changed), whereas the parameter collection of each scene is only persisted for as long as the
scene is open. Once the scene is closed, all changes to the parameter collection are NOT
persisted and upon reopening the scene, the parameters will have reverted to their initial state.
The initial state of a scene parameter collection can be configured during the scene authoring
process in the PRIME Scene Designer.

Both scene and project parameter collections can be accessed via scripting, which can retrieve
or modify the values of existing parameters, add entirely new parameters or remove those that
already exist. ​

Item(name As String)

Gets or sets the value of a parameter with the specified name.

Sample Usage:

' Display the current value of Name
MsgBox ActiveScene.Parameters.Item("Name")

' Change the value of Name
ActiveScene.Parameters.Item("Name") = "Jeff"

Items

Returns an enumeration of all parameters in the specified scene. An exception will be thrown if
this property is accessed before the scene has been opened.

Sample Usage:

' Iterate through each parameter in the scene
For Each action in ActiveScene.Parameters.Items
​ MsgBox parameter.Name & " = " & parameter.Value
Next

174 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

Contains(name As String)

Returns true if the parameters collection contains a parameter with the specified name.

Sample Usage:

If ActiveScene.Parameters.Contains("Name") Then
MsgBox "Parameter exists!"

​ End If

Remove(name As String)

If the collection contains a parameter with the specified name, the parameter is removed.

Sample Usage:

ActiveScene.Parameters.Remove("Name")

If Not ActiveScene.Parameters.Contains("Name") Then

MsgBox "Parameter no longer exists!"
​ End If

PRIME C# API Interaction

Although PRIME supports the original Channel Box VBScript API, there is additional integration
with the C# API. In Process scripts now automatically have keywords defined for all objects
within the executing scene. Each object provides access to as much of the C# API as possible,
varying in levels of support from object type to object type. For example, accessing a Text Box
control within the scene no longer requires use of the ActiveScene keyword. Instead the Text
Box control may be accessed directly using its script friendly name:

' Supported, but no longer necessary!​
' Dim textBox
' Set textBox = ActiveScene.Control("Text Box 1")
' textBox.Text = "ABC"​

TextBox1.Text = "ABC"​

The script-friendly name for an object follows the pattern below:

●​ Spaces are removed (e.g. "Text Box 1" becomes "TextBox1")
●​ Underscores are added (e.g. "123" becomes "_123")

175 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

●​

176 | PRIME 4.10.11 API and Scripting User Guide​ ​ ​ ​ ​ ​

	
	
	C# API
	Introduction
	Object Hierarchy
	SceneControl Object Hierarchy
	Scene Object Hierarchy
	Canvas Object Hierarchy
	ControlPanel Object Hierarchy

	
	Scripting Objects
	IScene​
	Properties
	Events
	PlayoutStateChanged
	ActionPlayed

	Methods
	FindObject
	​LogError
	LogException

	ISceneObject
	Properties
	Events
	PropertyChanged
	BeforePropertyChanged
	AfterPropertyChanged

	Methods
	Exists
	GetValue
	SetValue

	IDynamicObject
	Properties
	Events
	PropertyAnimated

	Methods
	FindAnimation
	GetAnimation
	IAnimation GetAnimation(string name)

	IAction
	Properties
	Events
	Methods
	Play
	Stop
	Reverse

	SceneActionList​
	Properties
	Methods
	Contains
	Find

	IAnimation
	Properties
	Methods
	Find
	GetFirstKeyframe
	GetLastKeyframe

	AnimationList
	Properties
	
	Methods
	Find
	Get

	IParameter
	Properties

	IParameterList
	Events
	Methods
	IParameter Find(string name)
	IParameter Set(string name, object value)
	IParameter Add(object value)
	void Remove(IParameter parameter)

	SceneControl
	Properties
	Events
	BeforeLoad
	AfterLoad
	AfterPlay
	BeforeStop
	AfterStop

	Methods
	Invoke

	FrameRate
	Properties

	Resolution
	Properties

	Workflow Logger
	Workflow Configuration Settings
	Workflow Monitor

	Control Panel Objects
	Button
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	Click​

	Label
	Properties

	TextBox
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged

	ComboBox
	Properties
	​Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	SelectedIndexChanged​

	
	CheckBox
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	CheckedChanged

	RadioButton
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	CheckedChanged

	NumericUpDown
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged

	TrackBar
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged

	ListView
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	SelectedIndexChanged​

	FilePicker
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	FileChanged

	AssetBrowser
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	FileChanged

	PictureBox
	Properties

	TimeCodeEditor
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	FramesChanged

	Canvas Objects
	Text
	Properties
	
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	PropertyAnimated
	TextChanged​

	Image
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	PropertyAnimated
	ImageChanged

	Clip
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	PropertyAnimated
	Finished

	Cube
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	PropertyAnimated

	Model
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	PropertyAnimated
	FileChanged

	Effects
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	PropertyAnimated

	Crop
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	PropertyAnimated

	Mask
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	PropertyAnimated

	Material
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	PropertyAnimated

	Light
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	PropertyAnimated

	Render Texture
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	PropertyAnimated

	Warp
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	PropertyAnimated

	Page Turn
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	PropertyAnimated

	Transition
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	PropertyAnimated

	Crawl
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	PropertyAnimated

	Character
	Properties
	Events
	BeforePropertyChanged
	PropertyChanged
	AfterPropertyChanged
	PropertyAnimated

	Usage
	Canvas Objects
	Graphics
	Text
	Clip
	Image

	Effects
	Warp
	Transition
	Transition before Update Events
	Transition after Update Events

	Crawl
	Start of Line Event
	End of Line Event
	End of File Event
	End of Data Event

	Resources
	Timer
	Timer Properties
	Timer Events

	Button Events
	Toolbox

	Keyframe Trigger

	Interface
	Scripting Editor
	Scene Scripting
	Scripting Properties
	References
	Assemblies
	Files

	Error List

	Scripting Properties

	Appendix
	Text File Reader
	Canvas
	Control Panel
	Script

	Side Show
	Canvas
	Control Panel
	​Script

	VB-JSCRIPT
	The Model
	Script Execution and Context
	​Scene Designer
	Object Hierarchy
	Global Keywords
	ActiveScene
	Prime
	Parameters

	API Reference
	Prime
	AllScenes
	OpenScenes
	Parameters
	Scene(id As String)
	SceneExists(id As String)

	SceneCollection
	Count
	Item(index)
	CloseAll
	StopAll

	Scene
	Close
	Control(name)
	Controls
	Load
	Object(name As String)
	Objects
	Open
	Parameters
	Play​
	SceneId
	SceneState
	Stop

	Control
	Name
	Type

	Button
	Pressed

	CheckBox
	Checked

	ComboBox
	ItemCount
	Items
	SelectedItem
	GetItemValue(item)

	FilePicker
	Path

	RadioButton
	Selected

	RichTextEditor
	Text

	Numeric Up/Down
	Value

	TextBox
	Text

	TimeCodeEditor
	Duration
	Frames

	Object
	Name

	Action
	Name
	Trigger

	Parameters
	Item(name As String)
	Items
	Contains(name As String)
	Remove(name As String)

	PRIME C# API Interaction

